EDLEN wavelength

By
Published by

?

Published : Friday, January 10, 2014
Reading/s : 18
Number of pages: 2
See more See less

10 janvie2r014[HARDETAIMLAIN NGOMA

EDLEavelength

Indefinitionߣ=ܿܶ , the photon energy due to an electron transition between an upper
atomic level k (of energy Ek) and a
lower lev݅elis∆ܧ= ܧ௞− ܧ௜=ℎߴ andߴ=ଵ்
Whereߣ:,htveWangleℎ: Planckconstant,ܧ௞:Energy transitionsߴ,:frequency.
The wavelength in vaciusuࣅm=ࡱ∆ࢉࢎherethe photon energyleerocttueanodn
transition between an upper atomic level k (of energy Ek) and a
lower leveilsiexpresesdinܿ݉ିଵ.
ଷ.ଵ଴ఴ
AN:ߣ௩௔௖=଺,଺଴ଶ.∆଴ଵషாయర×
Or1ܸ݁= 8065,541ܿ݉ିଵ= 1,602.10ିଵଽ= 1239,842݊݉
Wemustocnvert ∆ܧinܿ݉ିଵrehweߣ௩௔௖=భ,బలబలఴమ.ଵఱభ,,ఱబଽరష଼భభ଺వ.∆଴ଵாష(మ௖ఱ௠షభ)
=> ߣ௩௔௖= ∆ா(௠௖ଵ଴భషషమ) ,nemeastemcrusaretsaccruhteomtroscopiatespec
determinationswoafvelengthࣅ࢜ࢇࢉ,inuehtingtbemtheter or one of its multliipkle s
࢔࢓and we ha:ve
ࣅ࢜ࢇࢉ(ࢉ࢓) =ࣅ࢜ࢇࢉ(࢔࢓) ×૚૙ିૢ
A measurement ofoanorwer,numbwaveyc,uqneferitsetienethfoeyi(hnlevatgne
vacuum)isanequallyaccurateindaetonsionfcettheermotherishseped of light is exactly
defined.Themostcommonwavelengatrheutnhietsnanometer(nm)Å,ntghsetröm
(1 = 10ିଵ݊݉) and the micrometߤe݉r).(

10 janvie2r014[HARDETAIMLAIN NGOMA

=> ࣅ࢜ࢇࢉ(࢔࢓)=૚૙ିૢ×∆૚ࡱ૙ି(૛ࢉ࢓ି૚)=∆ࡱ(࢓૙૚ࢉ૚ିૠ)
Wavelength in: vacuum below 200 nm, air between 200 and 2000 nm, vacuum above 2
nm;andthewavelengthins:air i
ࣅࢇ࢏࢘=ࣅ࢜࢔ࢇࢉ

Where,

࢔=૚+૙,ૡ૜૝૛૚૜+[૚.૜૙.,૚૙૛૝૙૚૙ି૟૜(.૚૙∆ࡱૠ)૛]+ [૙,૜ૡ૙,ૢ૚.૞ૢ૚૙ૢ૚૙ૠ.ି૚(∆૙૞ࡱ)૛]
Is EDLENformulation
The wavenumber in vaciusuߪm=ఒೡೌ೎ଵ(௠)=ఒଵೡ଴೎ೌఴ(ܿ݉ିଵ) SI wavenumbeirt, theun
istheinversemeter,bpurtaicnticewavenumbersareusuallyexpressedin
inverse centimete1rܿs݉:ିଵ= 10ଶ݉ିଵ, equivalentt.2o7994295180ସx MHz.

Weremarkatththephotonwavelengtdhuetothewavelengthinvacaunudm
a the wavelengthaisirn∆ߣ(݊݉) =ߣ௩௔௖− ߣ௔௜௥.

Be the first to leave a comment!!

12/1000 maximum characters.

Broadcast this publication

You may also like