Functional Condensation Polymers

Functional Condensation Polymers




Although in nature the vast majority of polymers are condensation polymers, much publicity has been focused on functionalized vinyl polymers. Functional Condensation Polymers fulfills the need to explore these polymers which form an increasingly important and diverse foundation in the search for new materials in the twentyfirst century. Some of the advantages condensation polymers hold over vinyl polymers include offering different kinds of binding sites, their ability to be made biodegradable, and their different reactivities with various reagents under diverse reaction conditions. They also offer better tailoring of end-products, different tendencies (such as fiber formation), and different physical and chemical properties. Some of the main areas emphasized include dendrimers, control release of drugs, nanostructure materials, controlled biomedical recognition, and controllable electrolyte and electrical properties.



Published by
Published 01 January 2002
Reads 9
EAN13 0306475634
License: All rights reserved
Language English

Legal information: rental price per page €. This information is given for information only in accordance with current legislation.

Report a problem
A. Nano Materials
1.Lanthanide (III) Oxide Nanocomposites with HexafluoroisopropylidineBased Polyimides D. Scott Thompson, D. W. Thompson, Robin E. Southward 1.Introduction 1.1Hexafluoroisopropylidenecontaining polyimides 1.2Potential applications of fluorinated polyimides 1.3Oxometalpolyimide composites 1.4Research focus of paper 2.Experimental 2.1Materials 2.2Preparation of diquotris(2,4pentanedionato)lanthanum(III) and diaquotris(2,4pentadionato)gadolinium(III) monohydrate 2.3Preparation of polyimides 2.4oxolanthanumpolyimidePreparation and characterization of composite films 3.Results and Discussion 3.1Film synthesis 3.2Film properties: linear coefficients of thermal expansion and thermal and mechanical properties 3.3Rationale for the use of lanthanide(III)based inorganic phases 3.4Conclusions 4.References
2.Fumaryl Chloride and Maleic Anhydride Derived Crosslinked Functional Polymers and Nano Structures SamShajing Sun, Shahin Maaref, Carl E. Bonner 1.Introduction 1.1Need for functional polymer nano structures 1.2Polymer NLO waveguide 2.A Brief Survey of Crosslinked NLO Polymers 2.1Thermally crosslinked systems xi
3 3 5 5 6 7 7
7 8
8 8 8
9 13 13 13
17 17 20 22 23
2.2Photo crosslinked systems 3.Fumaryl Chloride and Maleic Anhydride Derived Crosslinked NLO Polymers 3.1Fumarate type crosslinkable polymers 3.2NLO Polymers from fumarate type crosslinked polymers 4.Summary and Future Research 5.References and Notes
3.Humeral Immune Response to Polymeric Nanomaterials Stephen C. Lee, R. Parthasarathy, K. Botwin, D. Kunneman, E. Rowold, G. Lange, J. Zobell, T. Beck, T. Miller, R. Jansson, C. F. Voliva
1.Introduction 1.1General 1.2Antigens, immunization and antibodies 1.3Current studies 2.Experimental 3.Results and Discussion 3.1Immune responses to PAMMAN dendrimers 3.2Antibody recognition to PAMAN dendrimers 4.Summary and Prospects 5.References
4.Preparation and Characterization of Novel Polymer/Silicate Nanocomposites Mason K. Harrup, Alan K. Wertsching, Michael G. Jones
1.Introduction 1.1Nanocomposite classification system 2.Experimental 2.1Synthesis 2.2Mechanical analysis 2.3ESEM Measurements 3.Results and Discussion 3.1Polyphosphazone nanocomposites 3.2Organic polymer nanocomposites 4.Applications 5.Acknowledgments 6.References
24 24 26 28 29
31 31 32 35 35 36 36 37 39 40
43 43 46 46 46 47 47 47 50 51 53 53
5.Metallocene Hematoporphyrins as Analytical Reagents—Nickel (II) Metal Adsorption Studies of Group IVB Metallocene Polymers Derived from Hematoporphyrin IX Charles E. Carraher, Jr., Jerome E. Haky, Alberto Rivalta 1.Introduction 2.Experimental 3.Results and Discussion 4.References
6.Polyester Ionomers as Functional Compatibilizers for Blends with Condensation Polymers and Nanocomposites Robert B. Moore, Timothy L. Boykin, and Grant D. Barber 1.Introduction 2.Experimental 2.1Materials 2.2Preparation of blend samples 2.3Blend characterization 2.4Preparation of nanocomposite samples 2.5Nanocomposite characterization 3.Results and Discussion 3.1AQ/PET Blends 3.2AQ/N66 Blends 3.3NaSPET/PBT Binary blends 3.4NaSPET/N66 Binary blends 3.5NaSPET/PET/N66 Compatibilized blends 3.6PET Nanocomposites 3.7PA Nanocomposites 4.Conclusions 5.Acknowledgments 6.References
B. Light and Energy
7.Sulfonated and Carboxylated Copoly(Arylenesulfone)s for Fuel Cell Applications Dirk Poppe, TorstenZerfaß, Rolf Mulhaupt, Holger Frey 1.Introduction 2.Polyarylene Synthesis
55 57 58 61
63 66 66 66 67 68 68 69 69 70 71 72 73 75 76 77 78 78
83 86
2.1groupsPolyarylenesulfones with 2.2Polyarylenes with COOH groups 2.3Blends 3.Membrane Properties 4.Summary 5.Acknowledgment 6.References
8.Preparation and Properties of Sulfonated or Phosphonated Polybenzimidazoles and Polybenzoxazoles Yoshimitsu Sakaguchi, Kota Kitamura, Junko Nakao, Shiro Hamamoto, Hiroshi Tochimori, Satoshi Takase
1.Introduction 2.Experimental 3.Results and Discussion 4.Conclusions 5.References
9.Design of Conjugated Polymers for Single Layer Light Emitting Diodes Zhonghua Peng
1.Introduction 2.Conjugated Polymers Exhibiting High Solid State PL Efficiencies 3.Exploring Approaches Toward Balanced Charge Injection and Transport 4.Polymers with Both High PL Efficiency and Balanced Charge Injection Properties 5.Conclusions 6.References
10.Synthesis and Characterization of Novel Blue LightEmitting Polymers Containing Dinaphthylanthracene Shiying Zheng, Jianmin Shi
1.Introduction 2.Experimental 3.Results and Discussion 4.References
87 89 91 91 93 93 93
95 97 98 103 103
105 106
116 118 119
121 123 128 133
11.Novel TwoPhoton Absorbing Polymers Kevin D. Belfield, Alma R. Morales, Stephen Andrasik, Katherine J. Schaefer, Ozlem Yavuz, Victor M. Chapela, Judith Percino 1.Introduction 2.Results and Discussion 3.Experimental 3.1Measurements 3.2Synthesis 3.2.1 General 3.2.2 2,7Dicyclo9,9didecylfluorene(3) 3.2.3 Poly(benzo[l,2d:4,5d']bisthiazole9,9didecylfluorene)(5) 3.2.4 7Benzothiazol2yl9,9didecylfluoren2ylaminemodified poly(styrenecomaleic anhydride)(7) 3.2.57Benzothiazol2yl9,9didecylfluorene2ylamine modified poly(ethylenegmaleic anhydride)(8) 4.Conclusions 5.Acknowledgments 6.References
C. Bioactivity and Biomaterials
12.Natural Functional Condensation Polymer Feedstocks Charles E. Carraher, Jr. 1.Introduction 2.Polysaccharides 2.1Inorganic esters 2.2Organic esters 2.3Other polysaccharides 2.3.1 Homopolysaccharides 2.3.2 Chitin and chitosan 2.5Heteropolysaccharides 3.Nucleic Acids 3.1Primary structure 3.2Secondary structure 3.3Higher structures 3.3.1Supercoiling 3.3.2Compaction 3.3.3 Replication 4.Proteins 4.1General structures 4.2Secondary structure
135 137 143 143 143 143 144 144
146 146 146 147
151 153 155 156 160 160 162 165 169 170 172 173 173 173 175 175 175 177
4.3Keratines 4.4Collagen 4.5Tertiary structure 4.6Globular proteins 5.Lignin 6.Readings
13.ItaconicFunctional Polymers Derived from Condensation of Andydride with Poly diol and with Poly(Ethylene glycol) Monica Ramos and Samuel J. Huang 1.Introduction 2.Experimental 2.1Materials 2.2Instrumentation 2.3Synthesis of polycaprolactone diitaconates 2.4poly(ethylene glycol) diitaconatesSynthesis of 2.5Crosslinkning procedure 2.6Gel swelling 3.Results and Discussion 3.1PCLDIs and PEGDIs macromonomersSpectral characteristics of 3.2Characterization of the hydrogels 4.Conclusions 5.Acknowledgments 6.References
14.Organometallic Condensation Polymers as Anticancer Drugs Deborah W. SiegmannLouda, Charles E. Carraher, Jr., Fred Pflueger, David Nagy, John R. Ross 1.Introduction 2.Experimental 3.Results and Discussion 4.References
15.Synthesis and Structural Characterization of Chelation Products Between Chitosan and Tetrachloroplatinate Towards the Synthesis of Water Soluble Cancer Drugs Charles E. Carraher, Jr., AnnMarie Francis, Deborah W. SiegmannLouda 1.Introduction 1.1Chitosan
177 179 180 180 181 183
185 186 186 187 187 187 188 189 189 189 191 195 196 196
199 201 202 205
207 207
1.2Platinumcontaining anticancer drugs 2.Experimental 3.Results and Discussion 3.1Synthesis 3.2Structural characterization 4.References
16.Condensation Polymers as Controlled Release Materials for Enhanced Plant and Food Production: Influences of Gibberellic Acid and Gibberellic AcidContaining Polymers on Food Crop Production Charles E. Carraher, Jr., Herbert Stewart, Shawn M. Carraher, Donna M. Chamely, Wesley W. Learned, James Helmy, Kumudi Abey, Alicia R. Salamone
1.Introduction 1.1General 1.2Gibberellins 1.3Auxins 1.4Cytokinetins 1.5Current study 2.Experimental 3.Results and Discussion 4.References
D. Enhanced Physical Properties
17.2,6AnthracenedicarboxylateContaining Polyesters and Copolyesters David M. Collard, David A. Schiraldi
1.Introduction 2.Monomer Synthesis and Polymerization 2.1Monomer synthesis 2.2Polymerization 3.Poly(alkylene anthracene 2,6dicarboxylate)s, PnA 4.Poly(ethylene 2,6anthracenedicarboxylatecoterephthalate)s, PETA 5.DielsAlder Crosslinking and Grafting Reactions of PETA 6.Photocrosslinking of PETA 7.Chain Extension of Anthraceneterminated PET 8.Conclusions 9.References
208 213 214 214 216 221
223 223 226 228 229 230 231 231 233
237 238 238 240 241 242 242 243 245 247 248
18.Synthesis and Characterization of Ionic and Nonionic Terminated Amorphous Poly(Ethylene isophthalate) Huaiying Kang, R. Scott Armentrout, Jianli Wang, Timothy E. Long 1.Introduction 2.Experimental 2.1Materials 2.2Preparation of catalyst solutions 2.3Synthesis of nonterminated high molecular weight poly(ethylene isophthalate) (PEI) 2.4Synthesis of sulfonate terminated PEI ionomers (PEISSBA) 2.5Synthesis of dodeconol terminated poly(ethylene isophthalate) (PEIDodeOH) 2.6Polymer characterization 3.Results and Discussion 3.1GPC and NMR Analysis 3.2FTIR Analysis 3.3DSC and TGA Analysis 3.4Solution viscometry study 3.5Melt rheology study 4.Conclusions 5.References
19.Synthesis, Characterization and Application of Functional Condensation Polymers from Anhydride Modified Polystyrene and Their Sulfonic Acid Resins Sakuntala Chatterjee Ganguly 1.Introduction 1.1Functional condensation polymer 1.1.1 Synthesis and chemical modification of a polymer in bulk 1.1.2 Surface modification of a polymer by chemical modification 1.1.3 Surface modification of a polymer by interpenetrating network (IPN) formation 2.Experimental 2.1Material 2.2Synthesis 2.2.1 Preparation of PSPA, PSTM, PSTHPA, PSPMDA 2.2.2 Synthesis of sulfonic acid resins PSPAS, PSTMAS, PSTHPAS, PSPMDAS and their sodium salts 2.2.3 Preparation of PSNTDA, PSPTDA and PS6FDA 2.2.4 Preparation of PSPMDA film
249 250 250 251
251 251
252 253 254 254 256 256 258 259 260 261
263 263 263
268 268 268 269 269
269 269 270
2.2.5 Preparation of dianhydride coated Teflon membrane 2.3Characterization 3.Results and Discussion 3.1Characterization of PSPA, PSTMA, PSTHPA, PSPMDA 3.2Novel membrane from pyromellitic dianhydride modified polystyrene with controlled pore size on micro and macrolevels 3.3Structural characterization of sulfonic acids resins PSPAS, PSTMAS, PSTHPAS and PSPMDAS 3.4Structural characterization of PSPTDA, PS6FDA and PSNTDA 3.5Low voltage scanning electron microscopy of a surface modified K100 teflon membrane and thermal analysis studies of several anhydride modified Nafioin 417 membranes 4.Conclusion 5.References
20.Condensation Copolymerization via RuCatalyzed Reaction of oQuinones or with oligodimethylsiloxanes Joseph M. Mabry, William P. Weber 1.Introduction 1.1Poly(silyl ether)s 1.2Transition metal catalysis 1.3Poly (silyl enol ether)s 2.Experimental 3.Results 3.1Results 3.2NMR Spectra 3.3Mechanism 3.4Luminescence 4.References
21.GelDrawn Poly(pphenylenepyromellitimide) Jim Sadanobu, Rei Nishio 1.Introduction 1.1History 1.2New procedure 2.Experimental 2.1Preparation of polyamic acid solution 2.2Film fabrication 2.3Characterization of polymer
270 270 271 271
276 280
283 285 286
287 287 287 288 288 292 292 293 295 296 297
299 299 300 301 301 302 302
3.Results and Discussion 3.1Effects of geldrawing 3.2Microstructure developed in imidized film 4.PPPI filmProperties of 5.Conclusions 6.References
Subject Index
302 302 305 307 309 309