Plasmonic Organic Solar Cells

Plasmonic Organic Solar Cells

-

English
106 Pages

Description

This book explores the incorporation of plasmonic nanostructures into organic solar cells, which offers an attractive light trapping and absorption approach to enhance power conversion efficiencies. The authors review the latest advances in the field and discuss the characterization of these hybrid devices using a combination of optical and electrical probes. 

Transient optical spectroscopies such as transient absorption and transient photoluminescence spectroscopy offer powerful tools for observing charge carrier dynamics in plasmonic organic solar cells. In conjunction with device electrical characterizations, they provide unambiguous proof of the effect of the plasmonic nanostructures on the solar cells’ performance. 

However, there have been a number of controversies over the effects of such integration – where both enhanced and decreased performance have been reported. Importantly, the new insights into the photophysics and charge dynamics of plasmonic organic solar cells that these spectroscopy methods yield could be used to resolve these controversies and provide clear guidelines for device design and fabrication.

Subjects

Informations

Published by
Published 04 October 2016
Reads 0
EAN13 9789811020216
License: All rights reserved
Language English

Legal information: rental price per page €. This information is given for information only in accordance with current legislation.

Report a problem
This book explores the incorporation of plasmonic nanostructures into organic solar cells, which offers an attractive light trapping and absorption approach to enhance power conversion efficiencies. The authors review the latest advances in the field and discuss the characterization of these hybrid devices using a combination of optical and electrical probes. 
Transient optical spectroscopies such as transient absorption and transient photoluminescence spectroscopy offer powerful tools for observing charge carrier dynamics in plasmonic organic solar cells. In conjunction with device electrical characterizations, they provide unambiguous proof of the effect of the plasmonic nanostructures on the solar cells’ performance. 
However, there have been a number of controversies over the effects of such integration – where both enhanced and decreased performance have been reported. Importantly, the new insights into the photophysics and charge dynamics of plasmonic organic solar cells that these spectroscopy methods yield could be used to resolve these controversies and provide clear guidelines for device design and fabrication.