Solid-State Imaging with Charge-Coupled Devices

Solid-State Imaging with Charge-Coupled Devices

-

English

Description

This text covers the complete chain, starting from the fundamentals of the CCD, the basics of solid-state imaging and an extensive review of advanced imaging, and concluding with a variety of applications. A detailed flow chart illustration of the processing of silicon for CCD imagers is also included. The book is divided into four main parts: the first deals with the basics of CCDs in general. The second explains the imaging concepts in close relation to the classical television application. Part Three goes into detail on new developments in the solid-state imaging world, and Part Four rounds off the discussion with a variety of applications and image technology.

Subjects

Informations

Published by
Published 01 January 1995
Reads 6
EAN13 0306471191
License: All rights reserved
Language English

Legal information: rental price per page €. This information is given for information only in accordance with current legislation.

Report a problem
Symbol list
List of figures
Preface
Chapter 0 : Introduction
CONTENTS
Chapter 1 : Fundamentals of chargecoupled devices 1.1. An ideal MOS capacitor 1 .1 .1. MOS capacitance in accumulation 1. 1 .2. MOS capacitance in deep depletion 1 .1 .3. MOS capacitance in inversion 1 .1 .4. MOS capacitance in weak inversion 1.2. A real MOScapacitor in a chargecoupled device 1.3. Charge transfer 1.3.1. Thermal diffusion 1.3.2. Selfinduced drift 1.3.3. Fringing fields 1.4. Charge transfer (in)efficiency 1.5. Buried channel CCD 1.5.1. From SCCD to BCCD 1.5.2. Fringing field and transfer time 1.5.3. Chargehandling capability 1.6. Onedimensional potential analysis 1.7. Conclusions
Chapter 2 : Into, through and out of a chargecoupled device 2.1. Transport systems 2.1.1. Fourphase system 2.1.2. Threephase system 2.1.3. Twophase system 2.1.4. Oneandahalf phase system 2.1.5. Virtualphase system 2.1.6. Ripple clock 2.2. Channel definition 2.3. Input structures 2.3.1. Diode cutoff
xiii
xix
xxv
1
7 7 8 10 13 16 18 25 28 29 31 36 39 40 42 45 48 51
53 54 54 57 58 62 63 63 66 69 70
viii
CONTENTS
2.3.2. Fillandspill 2.4. Output structures 2.4.1. Floating diffusion with reset 2.4.2. Floating gate without reset 2.5. Conclusions
Chapter 3 : A real CCD delay line 3.1. Effect of transport inefficiency 3.2. Effect of dark current 3.3. Effect of darkcurrent nonuniformities 3.4. Effect of noise 3.4.1. Shot noise 3.4.2. Trapping noise 3.4.3. kTC noise 3.4.4. Amplifier noise 3.5. Sampling of an electrical signal 3.6. Conclusions
Chapter 4 : Solidstate imaging at a glance 4.1. Photon sensing 4.2. Imager configurations 4.2.1. Linear imagers 4.2.2. Array imagers Frametransfer CCD Interlinetransfer CCD Frameinterlinetransfer CCD MOSXY imager Chargeinjection device Overview array imagers 4.3. Conclusions
Chapter 5 : Fundamentals of solidstate imaging 5.1. Absorption of photons 5.2. Collection of generated carriers 5.3. Spectral response 5.4. Quantum efficiency 5.5. Resolution 5.5.1. Diffusion MTF 5.5.2. Transport MTF 5.5.3. Geometric MTF 5.6. Aliasing and Moiré effects 5.7. Conclusions
73 75 76 79 83
85 87 92 94 97 97 98 99 99 100 106
109 109 112 112 114 114 117 119 120 123 125 128
131 131 134 136 139 142 143 145 148 152 154
SOLIDSTATE IMAGING WITH CHARGECOUPLED DEVICES
Chapter 6 : Solidfor television applicationsstate imaging 6.1. Scanning modes 6.1.1. Interlaced scanning Frametransfer CCD (Frame)interlinetransfer CCD 6.1.2. Progressive scanning 6.2. Color imaging 6.2.1. Stripe filters 6.2.2. Mosaic filters 6.2.3. Primary or complementary, stripe or mosaic 6.2.4. Color separation by a prism 6.2.5. Color imaging with linear arrays 6.3. Blooming and antiblooming 6.3.1. Lateral or horizontal antiblooming 6.3.2. Chargepumped or clocked antiblooming 6.3.3. Vertical antiblooming 6.4. Charge reset or electronic shutter 6.4.1. Charge reset in frametransfer CCDs 6.4.2. Charge reset in (frame) interlinetransfer CCDs 6.4.3. Charge reset in MOSXY and CID imagers 6.5. Conclusions
Chapter 7 : Advanced imaging : light sensitivity 7.1. Increasing the light sensitivity 7.2. Aperture ratio of the pixels 7.2.1. Microlenses 7.2.2. Photoconversion top layer 7.2.3. Optimizing the vertical CCDs 7.3. Light transmission of multilayered structure 7.3.1. Adapting the optical thicknesses 7.3.2. Minimizing the number of gates 7.3.3. Transparent conductive gates 7.4. Backside illumination 7.5. Pixels with an amplification function 7.5.1. Staticinduction transistor 7.5.2. Chargemodulation device 7.5.3. Bulk chargemodulated device 7.5.4. Amplified MOS intelligent imager 7.5.5. Basestored image sensor 7.6. Conclusions
ix
157 159 161 161 161 162 165 166 168 170 171 173 176 177 178 179 183 184
184 188 190
193 193 195 196 201 202 205 205 207 208 211 21 1 21 2 21 3 21 3 214 21 5 21 7
CONTENTS
Chapter 8 : Advanced imaging : noise and smear 8.1. Decreasing noise levels 8.2. Technologyrelated noise 8.2.1. Point defects 8.2.2. Column defects 8.2.3. Transfer noise 8.2.4. Striations 8.2.5. Pixel nonuniformities 8.2.6. Darkcurrent shot noise 8.3. Outputamplifier noise 8.3.1. Thermal noise 8.3.2. 1/f noise 8.3.3. Reset noise 8.3.4. Elimination of the reset noise 8.3.5. New outputamplifier architectures 8.4. Outputamplifier sensitivity 8.5. Smear 8.5.1. Smear in frametransfer CCDs 8.5.2. Smear in (frame)interlinetransfer CCDs 8.5.3. Smear compensation techniques 8.5.4. Smear in MOSXY and CID imagers 8.5.5. State of the art in smear suppression 8.6. Conclusions
Chapter 9 : Advanced imaging : device architectures 9.1. Increasing horizontal pixel density 9.1 .1 . Design adaptation 9.1.2. Gate tapering 9.1.3. Extra channel implantations 9.1.4. Compound channels 9.1 5. Combined techniques 9.2. New clocking schemes for vertical registers 9.2.1. Accordion CCD 9.2.2. Chargesweep device (CSD) 9.2.3. Highspeed clocks for vertical CCDs 9.2.4. Dynamic pixel management 9.3. Electronic still picture 9.4. Timedelay and integrating CCD 9.5. Conclusions
Chapter 10 : Nonconsumer imaging 10.1. Scientific imagers 10.1.1. Largearea devices
219 220 221 221 222 222 222 222 223 224 225 227 227 228 231 234 236 236 237 239 240 242 244
247 248 253 253 254 257 258 258 259 262 262 264 267 274 276
279 280 280
SOLIDSTATE IMAGING WITH CHARGECOUPLED DEVICES
10.1.2. Buttable devices 10.1.3. Notch CCD 10.1.4. Skipper CCD 10. 1 5. Pinnedphase CCDs Openphase pinned CCDs Multiphase pinning CCDs Dynamic pinning 10.2. Smart image sensors 10.2.1. ASIC Vision 10.2.2. Threedimensional integrated image sensor 10.2.3. Foveatedretina sensor 10.3. Nonvisible imaging 10.3.1. Infrared imaging 10.3.2. UV imaging 10.3.3. Xray imaging Xray imaging for spectroscopic purposes Xray imaging for medical purposes 10.4. Highspeed imagers 10.4.1. Imagers with multiple outputs 10.4.2. Galliumarsenide CCD Imagers 10.5. Contacttype linear imagers 10.6. Conclusions
APPENDIX 1 : How CCD imagers are made A1. 1. Substrate preparation A1.2. Implantation of the p well A1.3. Drivethe p wellin of A1.4. Implantation of the CCD channel A1 5. Drivein of the channel implant A1 .6. Implantation of the channel stoppers A1 .7. Gate oxidation A1 .8. Deposition of the first polySi layer A1 .9. Definition of the first polySi layer A1 .10. lnterpoly isolation A1 .11. Deposition of the second polySi layer A1 .12. Definition of the second polySi layer A1 .13. lnterpoly isolation A1 .14. Depositionofthe third polySi layer A1 .15. Definition of the third polySi layer A1 .16. Source and drain implantation A1 .17. Backend isolation A1 .18. Contacthole definition A1 .19. Deposition of the metal layer
xi
281 282 283 285 287 288 290 293 293 294 296 297 298 302 306 306 308 310 310 311 311 313
317 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
xii
CONTENTS
A1 .20 Definition of the metallization pattern A1 .21. Scratchprotection deposition A1 .22. Deposition of the first color filter layer A1.23. Liftoff of the first color filter A1 .24. Deposition of the second filter layer A1.25. Liftoff of the second color filter A1 .26. Deposition of planarization layers A1 .27. Etchthe planarization layersback of A1 .28. Deposition of the lens material A1.29. Reflow of the microlenses
APPENDIX 2 : How to interpret CCD artifacts A2.1. Reference picture A2.2. Smear A2.3. Charge reset A2.4. Blooming A2.5. lntegrationtime shortening A2.6. Column defects A2.7. Cover glass damage A2.8. Damage by electrostatic discharge A2.9. Gate dielectric damage A2.10. White point defects A2.11. Fixedpattern noise A2.12. Other noise sources
APPENDIX 3 : How to compromise on CCD specifications A3.1. Sensitivity and quantum efficiency A3.2. Resolution A3.3. Horizontal modulation transfer function A3.4. Vertical modulation transfer function A3.4.1. Frametransfer CCD A3.4.2. Frameinterlinetransfer and interlinetransfer CCD A3.5. Antiblooming A3.6. Smear A3.7. Cost price
References
Index
339 340 341 342 343 344 345 346 347 348
349 349 350 350 351 351 353 354 354 356 356 357 357
359 359 359 360 360 360 362 363 364 365
367
381