Integrated Biomaterial Science

Integrated Biomaterial Science

-

English

Description

Integrated Biomaterials Science provides an intriguing insight into the world of biomaterials. It explores the materials and technology which have brought advances in new biomaterials, highlighting the way in which modern biology and medicine are synergistically linked to other key scientific disciplines-physics, chemistry, and engineering. In doing so, Integrated Biomaterials Science contains chapters on tissue engineering and gene therapy, standards and parameters of biomaterials, applications and interactions within the industrial world, as well as potential aspects of patent regulations.
Integrated Biomaterials Science serves as a comprehensive guide to understanding this dynamic field, yet is designed so that chapters may be read and understood independently, depending on the needs of the reader. Integrated Biomaterials Science is attractive to a broad audience interested in a deeper understanding of this evolving field, and serves as a key resource for researchers and students of biomaterials courses, providing all with an opportunity to probe further.
Key Features:
Comprehensively covers the latest developments in the field,
Each chapter is written by key field leaders,
Covers applications and interactions within the industrial world,
Presents standards on biomaterials,
Explores aspects of patent regulations and patentability of biomaterials,
Exceptionally detailed, yet easily understood - perfect as a guide for professional researchers or as a text for emerging students.

Subjects

Informations

Published by
Published 01 January 2002
Reads 9
EAN13 0306475839
License: All rights reserved
Language English

Legal information: rental price per page €. This information is given for information only in accordance with current legislation.

Report a problem
Contents
1. Biological Materials Yoshito Ikada 1.1. Introduction 1.2.Fundamentals of Biological Materials 1.2.1.Polypeptides 1.2.2.Polysaccharides 1.2.3.Polyesters 1.2.4.Inorganic Materials 1.2.5.Composites 1.3. Medical Application of Biological Materials 1.3.1.General Surgery 1.3.2.Replacement of Diseased Tissues 1.3.3. Drug Delivery Systems (DDS) 1.3.4.Tissue Engineering 1.4.Conclusions References
2. Structure and Properties of Polymeric Materials Walter Marconi and Antonella Piozzi 2.1.Introduction 2.2.Polymers 2.2.1.General Properties 2.2.2.Synthesis 2.2.3.Molecular Weight 2.2.4.Isomerism 2.2.5.Crystallinity 2.2.6.Mechanical Properties 2.3.Polymers in Medicine 2.3.1. Synthetic Polymers 2.3.2.Biodegradable and Bioresorbable Polymers 2.3.3.Polymers for Extracorporeal Enzymatic Detoxification 2.4.Requirements and Evaluation of Polymeric Materials 2.4.1.Bulk and Surface Properties
xiii
1 2 2 5 11 12 12 14 14 16 19 20 22 22
25 27 27 29 30 32 33 35 36 37 40 41 43 43
xiv
2.4.2.Chemical Modifications 2.4.3.Production of Polymeric Materials 2.4.4.Biological Interaction of Polymer Materials References
3. Fundamentals of Polymeric Composite Materials Claudio Migliaresi and Alessandro Pegoretti
3.1.Introduction 3.2.Fiber Reinforcements 3.2.1.Inorganic Fibers 3.2.2.Carbon (Graphite) Fibers 3.2.3.Polymeric Fibers 3.3.Matrix Resins 3.3.1.Thermoset Matrices 3.3.2.Thermoplastic Matrices 3.4.Fiber/Matrix Adhesion 3.5.Volume and Weight Fractions 3.6.Mechanics of ContinuousFiberReinforced Composites 3.6.1.Elastic Properties of a Unidirectional Lamina 3.6.2.Elastic Properties of a Laminate 3.6.3.Failure of a Unidirectional Lamina 3.7.Mechanics of DiscontinuousFiberReinforced Composites 3.7.1.Fiber/Matrix Stress Transfer 3.7.2.DiscontinuousFiber CompositesElastic Properties of 3.7.3.Ultimate Properties of DiscontinuousFiber Composites 3.8.Mechanics of Particulate Composites 3.9.Manufacture of Composites 3.9.1.Manufacture of Thermosetting Polymer Composites 3.9.2.Manufacture of Thermoplastic Polymer Composites References
Contents
4. Biodegradable Polymers Luca Fambri, Claudio Migliaresi, Kernal Kesenci, and Erhan Piskin
4.1. 4.2. 4.3. 4.4. 4.5.
4.6.
Introduction Definition Mechanisms Properties and Applications Natural Polymers 4.5.1.PolysaccharideBased Polymers 4.5.2.ProteinBased Polymers 4.5.3.Microbial Polyesters Synthetic Polymers 4.6.1. Aliphatic Polyesters
50 56 63 66
69 71 72 73 76 78 79 81 84 87 88 88 94 97 99 99 101 105 106 108 108 113 114
119 120 121 126 129 129 137 143 145 145
Contents
4.6.2.Poly(esteramides) 4.6.3.Polyorthoesters 4.6.4. Polyanhydrides 4.6.5.Poly(alkyl 2cyanoacrylate) 4.6.6.Polyimino Carbonates 4.6.7.Polyphosphazenes 4.6.8.Polyethyleneterephthalate 4.6.9.Polyamides 4.6.10.Polyurethanes 4.7.Factors Affecting the Degradation of Polymeric Materials References
5. Bioceramics and Biological Glasses A. Krajewski and A. Ravaglioli
5.1.The Structure of Ceramics from Synthesis to Processing 5.1.1.Ceramics 5.1.2.The Outstanding Properties of Ceramics 5.1.3. The Drawbacks of Ceramics 5.1.4.The Structural Properties of Ceramics and Their Possibilities 5.1.5. Processing of Ceramics 5.1.6.The Thermal Process 5.1.7.Sintering 5.2.Design and Duration of Ceramic Devices under Load 5.3.Ceramics for Surgical Implants 5.3.1.Inert Bioceramics 5.3.2.Bioactive Ceramics 5.3.3.Ceramic and Polymeric Carbons 5.3.4.Biological Glasses 5.3.5. Coatings 5.4.A Survey on the Adhesion of Ceramics to Bone Tissue References
6. Metallic Materials Alberto Cigada, Roberto Chiesa, Maria Rosa Pinasco, and Kunihiro Hisatsune 6.1.The Crystalline Structure of Metallic Materials 6.2.Lattice Defects 6.2.1.Point Defects and Solid State Diffusion 6.2.2.Linear Defects and Plastic Deformation 6.2.3.Surface Defects and Grain Boundaries 6.2.4.Effect of Plastic Deformation Temperature on Grain Size
xv
150 152 154 155 156 157 159 161 163 165 170
189 190 191 192
193 200 202 202 207 208 209 217 240 244 249 252 252
255 256 257 257 260 261
xvi
6.3.Structure of Metallic Alloys 6.3.1.Interstitial Solid Solutions 6.3.2.Substitutional Solid Solutions 6.3.3.Intermetallic Phases 6.3.4.Presence of More Phases 6.4.Phase Diagrams 6.4.1.Phase 6.4.2.Variance and Phase Rule 6.4.3.Graphic Representation of Binary Phase Diagrams 6.4.4.Presence of One Phase 6.4.5.Presence of Two Phases and the Lever Rule 6.4.6. Presence of Three Phases 6.4.7.Iron–Carbon Phase Diagrams 6.4.8.Iron–Nickel and IronChromium Diagrams 6.4.9.Titanium–Aluminum and Titanium–Vanadium Diagrams 6.4.10.Other Phase Diagrams 6.5.Thermal Treatments 6.5.1.Full Annealing 6.5.2.Normalization 6.5.3.Quenching 6.5.4.Tempering 6.6.Strengthening of Metals 6.6.1. Strengthening by Alloying 6.6.2.Strengthening by Work Hardening 6.6.3.Strengthening by Addition of Oligoelements 6.6.4.Strengthening by Thermal Treatments 6.6.5.Strengthening by Order–Disorder Transformations 6.7.Working Technologies 6.7.1.Hot or Cold Plastic Deformation 6.7.2.Molding 6.7.3.Powder Metallurgy 6.7.4.Tool Machining 6.7.5.Bonding 6.7.6.Surface Finishing 6.8.Main Metallic Materials Used as Biomaterials 6.8.1. Austenitic Stainless Steel 6.8.2.Cobalt Alloys 6.8.3.Titanium and Titanium Alloys 6.8.4.Precious Metal Alloys
7. Degradation Processes on Metallic Surfaces Emma Angelini, Angelo Caputo, and Fabrizio Zucchi 7.1. Introduction 7.2.The Biological Environment
Contents
262 262 262 263 263 263 263 264 264 265 266 267 268 269 269 271 272 276 277 277 277 277 278 278 278 279 279 280 281 285 287 288 288 289 289 290 291 292 294
297 297
Contents
7.3.Metallic Corrosion 7.3.1.Dry Corrosion 7.3.2.Wet Corrosion 7.3.3.Kinetics 7.3.4.the Biological EnvironmentInfluence of Corros7.4.ion Forms 7.4.1.Generalized Corrosion 7.4.2.Localized Corrosion 7.4.3.Galvanic Corrosion 7.4.4. Selective Corrosion 7.4.5.Wear Corrosion 7.5. Corrosion Prevention References
8. Characterization of Biomaterials Donald Lyman 8.1.Requirements of Biomedical Characterization 8.2. Structure of Materials 8.3.The Nature of Surface Dynamics and Surface Analysis 8.3.1.Metal and Ceramic Surfaces 8.3.2. Polymer Surfaces 8.4.Organization of Polymer Surfaces 8.4.1. Anisotropy of Polymer Surfaces 8.4.2.Microphase Heterogeneous Surfaces References
9. Tissues Luigi Ambrosio, Paolo A. Netti, and Peter A. Revell
9.1.Introduction 9.2.Soft Tissues 9.3.Hard Tissues References
10. Soft Tissue Luigi Ambrosio, Paolo A. Netti, and Luigi Nicolais 10.1. Structure–Property Relationship of Soft Tissue 10.1.1.Introduction 10.1.2.Mechanical Properties 10.1.3.Transport Properties 10.2.Skin
xvii
298 298 299 303 308 308 309 309 316 320 320 320 323
325 327 328 328 329 330 331 332 336
339 340 342 345
347 347 349 352 353
xviii
10.2.1. Composition and Structure 10.2.2.Mechanical Properties 10.3.Tendons and Ligaments 10.3.1. Composition and Structure 10.3.2.Mechanical Properties References
11. The Eye Domenico Lepore, Luigi Ambrosio, Roberto De Santis, Luigi Nicolais, and Luigi Scullica
11.1. Introduction 11.2.The Cornea 11.3. The Sclera 11.4. The Vitreous References
12. Articular Cartilage Paolo A. Netti and Luigi Ambrosio
12.1. Introduction 12.2. Composition and Structure 12.2.1. Composition 12.2.2. Structure 12.3. Mechanical Properties 12.3.1.Static Properties 12.3.2. TimeDependent Properties 12.3.3. Viscoelastic Shear Properties 12.3.4.Viscoelastic Properties in Compression 12.3.5. Hydraulic Conductivity of Cartilage 12.3.6. Compressive Behavior of Articular Cartilage 12.3.7. Confined Compression 12.4.Electromechanical Transduction 12.5.Remodeling and Repair References
13. The Mechanical and Material Properties of the Healthy and Degenerated Intervertebral Disc Ron Alkalay 13.1. Introduction 13.2.Anatomy 13.2.1.Nucleus Pulposus
Contents
354 356 357 358 359 363
367 368 373 375 379
381 382 382 3 83 386 386 388 388 389 390 3 9 1 3 93 394 396 398
403 404 404
Contents
13.2.2.Annulus Fibrosus 13.2.3.End Plate 13.3.Material Properties of the Structures of the Disc 13.3.1. Nucleus Pulposus 13.3.2.Annulus Fibrosus 13.3.3.End Plate 13.4.Mechanical Behavior of the Intervertebral Disc 13.5. The Effect of Degradation on the Mechanical Properties of the Disc 13.6. Intervertebral Disc Prostheses 13.7.Summary References
14. Soft Tissue Replacement Matteo Santin, Luigi Ambrosio, Andrew W. Lloyd, and Stephen P. Denyer 14.1.Introduction 14.2.Cardiovascular Devices 14.2.1.Vascular Grafts 14.2.2.Vascular Stents 14.2.3. Substitute Heart Valves (SHV) 14.3.Intraocular Devices 14.3.1.Intraocular Lenses 14.3.2. Keratoprostheses 14.4. Other Applications in Soft Tissue Replacement 14.4.1. Artificial Skin 14.4.2.Hernia Repair 14.4.3.Urological Devices 14.4.4.Ligament and Tendon Prostheses 14.4.5.Intervertebral Disc Prostheses 14.5.Conclusions References
15. Mechanics of Hard Tissues Arturo N. Natali and Richard T. Hart 15.1.Introduction 15.2. Experimental Methods and Results: Determination of Mechanical Properties and Structural Configuration 15.2.1. Mechanical Testing 15.2.2.Ultrasound Analysis 15.3.Mechanics of Bone
xix
405 406 406 406 408 411 411
415 416 419 420
425 426 427 431 434 436 437 441 444 444 445 445 446 447 449 450
459
462 462 468 469
xx
15.3.1. Material Properties 15.3.2.Structural Properties 15.4.Bone Physiology 15.5.Functional Adaptation of Bone 15.5.1.Phenomenological Models 15.5.2.Mechanistic Models 15.6. Numerical Approach 15.7.Conclusions References
16. Hip Joint Replacements Giuseppe Guida and Dante Ronca
16.1 Introduction to Joint Replacements 16.2.History 16.3. Cemented Prostheses 16.3.1. Femoral Stem 16.3.2. Cotyle 16.4.The Noncemented Prostheses 16.4.1.Femoral Stem 16.4.2.Cotyle 16.5.Friction and Wear 16.5.1.Femoral Head Materials 16.5.2.Dimensions of the Head 16.5.3.Cotyle Materials References
17. Knee Joint Replacements Dante Ronca and Giuseppe Guida 17.1. Introduction 17.2. History 17.2.1.Total Knee Arthroplasty 17.2.2.Hinged Knee Arthroplasty 17.2.3.Unicompartmental Knee Arthroplasty 17.3.The Knee: Anatomical, Functional, and Structural Considerations 17.4.Polyethylene 17.4.1.Contact Stress, Congruency, and Conformity 17.4.2. Thickness 17.4.3.Metal Backing 17.4.4. Strength 17.4.5. Degradation 17.4.6.Debris
Contents
469 471 475 476 478 481 482 486 486
491 492 498 498 503 505 505 512 517 518 519 519 520
527 529 529 532 534
536 537 537 540 541 542 543 544
Contents
17.5.Alignment 17.6.Fixation 17.7.Patellofemoral Joint 17.8.Conclusion References
18. Biomaterial Applications: Elbow Prosthesis Luigi Celli 18.1.Introduction 18.2. The Prosthetic Design 18.3. Cases in which the Elbow Prosthesis Is Advisable References
19. Biomaterial Applications: Shoulder Prosthesis Luigi Celli
19.1.Introduction 19.2.The Prosthetic Design 19.3.The Prosthetic Implantation 19.4. Conforming Design of the Articular Surfaces 19.5.Articular and Periarticular Resistances 19.6.The Active Role of Periarticular Muscles References
20. Acrylic Bone Cements MariaPau Ginebra, FranciscoJavier Gil, and JosepAnton Planell 20.1.Introduction 20.2. Chemistry of Acrylic Bone Cements 20.2.1.Chemical Composition: Powder and Liquid 20.2.2.Chemical Reactions and Setting Process 20.2.3. Molecular Weight 20.3.Mechanical Properties 20.3.1.Strength and Elastic Modulus 20.3.2.Viscoelastic Behavior 20.3.3. Fracture Toughness 20.3.4.Fatigue 20.4.Factors Affecting the Microstructure and the Microstructure–Mechanical Properties Relationship 20.4.1.Porosity
xxi
545 546 547 550 550
555 556 558 558
561 562 563 564 566 566 568
569 570 570 571 574 574 575 575 576 576
578 579
xxii
20.4.2.In VivoEnvironment 20.4.3.Additives 20.5.Biological Properties 20.6. Modification of Acrylic Bone Cements References
21. Mechanical Properties of Tooth Structures Roberto De Santis, Luigi Ambrosio, and Luigi Nicolais
21.1.Introduction 21.2.Mechanical Properties 21.2.1.Static Mechanical Properties 21.2.2.Hardness 21.2.3.Fracture Toughness References
22. Dental Materials and Implants Maria Rosa Pinasco, Arturo Natali, Patrizia Loria, Marc Bolla, and Franck J. Hagege 22.1.Introduction 22.2.Stomatognatic Apparatus: Some Considerations 22.3.Dental Materials for Hard and Plastic Restorative Treatment 22.3.1. Tooth Restoration: Filling, Inlay, and Onlay 22.3.2.Restorative Materials: Metals and Alloys, Composite Resins, Glass Ionomers 22.4.Materials for Complex Reconstructions 22.5.Prosthetic Therapy Materials 22.5.1.Fixed Prosthesis Materials 22.5.2.Moving Partial or Total Prosthesis Materials 22.5.3.Precious and Nonprecious Alloys for Dental Prostheses 22.6.Dental Implant Materials: A Few Considerations 22.7.Biomaterials for Surgical Reconstitution 22.7.1.Periodontal Regeneration 22.7.2.Goal of Osseous Grafting 22.7.3.Factors Influencing Graft Success 22.7.4. Regenerative Materials 22.8.Dental Implants and Biomechanics 22.8.1.Introduction 22.8.2.Tissue Mechanics 22.8.3.Implant Mechanics and Loading
Contents
579 580 582 582 584
589 592 592 595 595 597
601 602
609 609
610 621 622 623 624
625 629 631 631 631 631 631 639 639 640 642