Electrothermal Analysis of VLSI Systems

Electrothermal Analysis of VLSI Systems

-

English

Description

Electrothermal Analysis of VLSI Systems addresses electrothermal problems in modern VLSI systems.
Part I, The Building Blocks, discusses electrothermal phenomena and the fundamental building blocks that electrothermal simulation requires (including power analysis, temperature-dependent device modeling, thermal/electrothermal simulation, and experimental setup-calibration).
Part II, The Applications, discusses three important applications of VLSI electrothermal analysis including temperature-dependent electromigration diagnosis, cell-level thermal placement and temperature-driven power and timing analysis.Electrothermal Analysis of VLSI Systems, will be useful for researchers in the fields of IC reliability analysis and physical design, as well as VLSI designers and graduate students.

Subjects

Informations

Published by
Published 01 January 2000
Reads 10
EAN13 0306470241
License: All rights reserved
Language English

Legal information: rental price per page €. This information is given for information only in accordance with current legislation.

Report a problem
Contents
ListofFigures ListofTables Preface Acknowledgments
PartITHE BUILDING BLOCKS 1. INTRODUCTION 1.1. Electrothermal Phenomena in VLSI Systems 1.2. Introduction to Electrothermal Simulation 1.2.1 OverviewofElectrothermal Simulation for ICs 1.3. ILLIADS-T: An Electrothermal Simulator for VLSI Systems 1.4. Overview of thisBook 2. POWER ANALYSIS FOR CMOS CIRCUITS 2.1. Introduction 2.2. SourcesofPower ConsumptioninCMOS Technology 2.2.1 Dynamic Power 2.2.2 Internal Power 2.2.3 Short-circuit Power 2.2.4 Leakage Power 2.3. Power Analysis Overview 2.4. Introduction to Power Analysis Techniques 2.4.1 Deterministic Power Analysis 2.4.2 Probabilistic Power Analysis 2.4.3 Statistical Power Analysis 2.4.4 Power Analysis for Sequential Circuits 2.5. Summary 3. TEMPERATURE-DEPENDENT MOS DEVICE MODELING 3.1. Introduction 3.2. Temperature-dependent Device Physics and Modeling
ix xv xvii xxi
3 4 5 6 12 15 21 21 21 22 23 24 25 28 29 29 30 33 37 39 45 45 46
vi
ELECTROTHERMAL ANALYSISOFVLSI SYSTEMS
3.2.1 Temperature-dependent Threshold Voltage 3.2.2 Temperature-dependent Carrier Mobility 3.3. Temperature-dependent BSIM Model for SPICE Simulation 3.4. Regionwise Quadratic (RWQ) Model 3.4.1 Temperature-dependent Mobility Modeling 3.4.2 Extraction for RWQ Modeling 3.4.3 Mobility and RWQ Fitting Examples 3.5. Summary 4. THERMAL SIMULATION FOR VLSI SYSTEMS 4.1.Introduction 4.2. Substrate/Package Modeling: An Overview 4.3. Formulation of Thermal Analysis 4.3.IFast Thermal Analysis 4.3.2 Numerical Approach 4.3.3 Analytical Approach 4.3.4 Discussion 4.4. Package Simulation 4.4.1 Modeling of the Convective Boundaries 4.4.2 Modeling of Heat Flow Paths 4.5. Summary 5. FAST-TIMING ELECTROTHERMAL SIMULATION 5.1. Introduction 5.2. ILLIADS: A Fast Timing Simulator 5.2.1Primitive Formation and Solutions 5.2.2 Simulation Strategies 5.2.3 Power Estimation using ILLIADS 5.3. Incremental Electrothermal SimulationinILLIADS-T 5.4. Tester Chip Design and Calibration 5.5. Verification of ILLIADS-T 5.6. ILLIADS-T Simulation Examples 5.7. Summary
Part II THE APPLICATIONS 6. TEMPERATURE-DEPENDENT ELECTROMIGRATION RELIABILITY 6.I.Motivation 6.2. Electromigration (EM) Physics 6.2.1 EM Lifetime Dependence on Current Density 6.2.2 EM Lifetime Dependence on Current Waveforms 6.2.3 EM Lifetime Dependence on Interconnect Width and Length 6.2.4 EM Model Used in theBook 6.3. EM Simulation: An Overview
46 47 48 51 53 54 54 57
61 61 64 65 65 72 79 82 83 83 84 88
95 95 96 96 98 101 101 103 105 112 116
121 121 122 123 124
127 129 129
Contents
6.4. ITEM: A Temperature-dependent EM Diagnosis Tool 6.4.1 Interconnect Temperature Estimation 6.4.2 Analytical ModelofInterconnect Thermal System 6.4.3 Lumped ModelofInterconnect Thermal System 6.4.4 iTEM Simulation Examples 6.5. Summary 7. TEMPERATURE-DRIVEN CELL PLACEMENT 7.1. Introduction 7.2. Overview 7.3. Substrate Temperature Calculation 7.4. Compact Substrate Thermal Modeling 7.4.1 Transfer Thermal Resistance Matrix 7.4.2 Admittance Matrix Reduction 7.4.3 Runtime EfficiencyofCompact Thermal Modeling 7.5. Thermal Placement Algorithms 7.5.1Standard Cell Thermal Placement 7.5.2Macrocell Thermal Placement 7.6. Simulation Examples 7.7. Summary 8. TEMPERATURE-DRIVEN POWER AND TIMING ANALYSIS 8.1. Introduction 8.2. Timing Analysis Overview 8.2.1 Dynamic Timing Analysis 8.2.2 Static Timing Analysis 8.2.3 Delay Modeling 8.3. Statistical Power Density Estimation 8.4. Monte-Carlo Power-Temperature Iteration Scheme 8.5. Temperature-dependent Gate and RC Delays 8.6. Simulation Examples 8.7. Summary
Index
vii
133 133 135 136 143 148
157 157 157 160 161 161 163 164 165 165 168 169 172
181 181 182 182 183 190 191 192 I94 194 199
205