21 Pages
English
Gain access to the library to view online
Learn more

A Comparative Introduction to XDG: Adding the Deep Syntax Dimension

-

Gain access to the library to view online
Learn more
21 Pages
English

Description

A Comparative Introduction to XDG: Adding the Deep Syntax Dimension Ralph Debusmann and Denys Duchier Programming Systems Lab, Saarland University, Saarbr ?ucken, Germany and ·Equipe Calligramme, LORIA, Nancy, France A Comparative Introduction to XDG: Adding the Deep Syntax Dimension – p.1

  • principle

  • lexical classes

  • objd vcd

  • deep syntax

  • ·equipe calligramme

  • partd root

  • programming systems

  • saarland university

  • dimensional principles


Subjects

Informations

Published by
Reads 52
Language English

Exrait

A Comparative Introduction to XDG: Adding
the Deep Syntax Dimension
Ralph Debusmann
and
Denys Duchier
Programming Systems Lab, Saarland University, Saarbruc¤ ken, Germany
and
·
Equipe Calligramme, LORIA, Nancy, France
A Comparative Introduction to XDG: Adding the Deep Syntax Dimension ? p.1This presentation

adding the Deep Syntax (ds) dimension to the example
grammar

new:

type de nitions

one-dimensional principles (dag, valency)
1

multi-dimensional pr (climbing, linking, linking )

lexical classes
A Comparative Introduction to XDG: Adding the Deep Syntax Dimension ? p.2De ning the new types

edge labels:
deftype "ds.label" fdetd subjd objd vcd partd rootg
deflabeltype "ds.label"

lexical entries:
deftype "ds.entry" fin: valency("ds.label")
out:("ds.label")g
defentrytype "ds.entry"
A Comparative Introduction to XDG: Adding the Deep Syntax Dimension ? p.3Instantiating the ds principles

re-used from the other dimensions (id, lp):

class of models: graph principle

deep subcategorization: valency principle

new:

class of models: dag principle
A Comparative Introduction to XDG: Adding the Deep Syntax Dimension ? p.4Class of models, deep subcategorization
useprinciple "principle.graph" f
dims fD: dsgg
useprinciple "principle.dag" f
dims fD: dsgg
useprinciple "principle.valency" f
dims fD: dsg
args fIn: _.D.entry.in
Out: _.D.entry.outgg
A Comparative Introduction to XDG: Adding the Deep Syntax Dimension ? p.5Extending the multi dimension

add lexical attributes for multi-dimensional principles:
defentrytype f%% id/lp multi-dimensional principles
blocks_lpid: set("id.label")
%% ds/id principles
link2_dsid: map("ds.label" iset("id.label"))
link2_idds: map("id.label" iset("ds.label"))g

instantiate multi-dimensional principles:

restrict the class of models: climbing principle

realize deep by surface arguments: linking principle

surface arguments realize deep arguments: linking
1
principle ( )
A Comparative Introduction to XDG: Adding the Deep Syntax Dimension ? p.6Restricting the class of models
useprinciple "principle.climbing" f
dims fD1: id
D2: dsgg

parameters:

dimensions: D1,D2 (here: id,ds)

deep syntactic arguments can emancipate and be
realized by surface syntactic arguments higher up
A Comparative Introduction to XDG: Adding the Deep Syntax Dimension ? p.7Realizing deep by surface arguments
maria einen roman zu schreiben verspricht
maria einen roman zu schreiben verspricht
A Comparative Introduction to XDG: Adding the Deep Syntax Dimension ? p.8
subj
subjd
subjd
obj
objd
vinf
vcd
det
detd
par
t
par
td6
Realizing deep by surface arguments contd.
useprinciple "principle.linking" f
dims fD1: ds
D2: id
Multi: multig
args fLink1: fg
Link2: _.Multi.entry.link2_dsidgg

linking from ds to id dimension

declarative semantics (end point):
00
l l
00
h! d ) l 2 F (l)^ ! d
1 2 2

declarative semantics (start point and end point):
0
l l
0
h! d ) (F (l) =; ) l 2 F (l) ^ h! :::! d)^
1 1 1 2 2
00
l
00
(l 2 F (l)^ ! d)
2 2
A Comparative Introduction to XDG: Adding the Deep Syntax Dimension ? p.9

F =Link1 and F =Link2
1 2Surface arguments realize deep arguments
useprinciple "principle.linking" f
dims fD1: id
D2: ds
Multi: multig
args fLink1: fg
Link2: _.Multi.entry.link2_iddsgg
1

linking

from id to ds dimension
A Comparative Introduction to XDG: Adding the Deep Syntax Dimension ? p.10