CLASSIFICATION OF TOTALLY REAL ELLIPTIC LEFSCHETZ FIBRATIONS VIA NECKLACE DIAGRAMS

English
24 Pages
Read an excerpt
Gain access to the library to view online
Learn more

Description

CLASSIFICATION OF TOTALLY REAL ELLIPTIC LEFSCHETZ FIBRATIONS VIA NECKLACE DIAGRAMS NERMI˙N SALEPCI˙ Abstract. We show that totally real elliptic Lefschetz fibrations admitting a real section are classified by their “real loci” which can be encoded in terms of a combinatorial object that we call a necklace diagram. By means of necklace diagrams, we obtain an explicit list of certain classes of totally real elliptic Lefschetz fibrations. 1. Introduction As is well known, a Lefschetz fibration is a projection from an oriented connected smooth 4-manifold onto an oriented connected smooth surface such that there exist finitely many critical points around which one can choose complex charts on which the projection takes the form (z 1 , z 2 ) ? z 2 1 + z 2 2 . Regular fibers of a Lefschetz fibration are oriented closed smooth surfaces of genus g, while singular fibers have only nodes. In the present work, we consider only those fibrations whose fiber genus is 1. We call such fibrations elliptic Lefschetz fibrations. Without loss of generality, we assume that each singular fiber contains only one node and that no fiber contains a self intersection -1 sphere (fibrations with the latter property are called relatively minimal). We study real elliptic Lefschetz fibrations; that is to say, elliptic Lefschetz fibra- tions whose total and base spaces have real structures which are compatible with the fiber structure.

  • necklace diagrams

  • totally

  • lefschetz fibrations

  • real elliptic

  • has been known

  • around

  • directed


Subjects

Informations

Published by
Reads 32
Language English
Report a problem
CLASSIFICATIONOFTOTALLYREALELLIPTICLEFSCHETZFIBRATIONSVIANECKLACEDIAGRAMSNERMI˙NSALEPCI˙Abstract.WeshowthattotallyrealellipticLefschetzfibrationsadmittingarealsectionareclassifiedbytheir“realloci”whichcanbeencodedintermsofacombinatorialobjectthatwecallanecklacediagram.Bymeansofnecklacediagrams,weobtainanexplicitlistofcertainclassesoftotallyrealellipticLefschetzfibrations.1.IntroductionAsiswellknown,aLefschetzfibrationisaprojectionfromanorientedconnectedsmooth4-manifoldontoanorientedconnectedsmoothsurfacesuchthatthereexistfinitelymanycriticalpointsaroundwhichonecanchoosecomplexchartsonwhichtheprojectiontakestheform(z1,z2)z12+z22.RegularfibersofaLefschetzfibrationareorientedclosedsmoothsurfacesofgenusg,whilesingularfibershaveonlynodes.Inthepresentwork,weconsideronlythosefibrationswhosefibergenusis1.WecallsuchfibrationsellipticLefschetzfibrations.Withoutlossofgenerality,weassumethateachsingularfibercontainsonlyonenodeandthatnofibercontainsaselfintersection-1sphere(fibrationswiththelatterpropertyarecalledrelativelyminimal).WestudyrealellipticLefschetzfibrations;thatistosay,ellipticLefschetzfibra-tionswhosetotalandbasespaceshaverealstructureswhicharecompatiblewiththefiberstructure.Arealstructureonanorientedsmooth4-manifoldisdefinedasanorientationpreservinginvolutionwhosefixedpointset(calledtherealpart)hasdimension2,ifitisnotempty.Tworealstructuresareconsideredthesameiftheydifferbyaconjugationbyanorientationpreservingdiffeomorphism.Itisworthmentioningherethatnotevery4-manifoldadmitssuchaninvolution.Examplesof4-manifoldswhichdonotadmitrealstructurescanbefoundin[3].Likewise,arealstructureonasmoothorientedsurfaceisdefinedasanorientationreversinginvo-lution.Obviouslyeverysurfaceadmitsarealstructure.Besides,theclassification(uptoconjugationbyanorientationpreservingdiffeomorphism)ofrealstructuresonsurfacesisknown.Therearetwoinvariantsthatdeterminetheconjugacyclassofarealstructure:itstype(separating/non-separating)andthenumberofthecomponentsofitsrealpart.Arealstructureiscalledseparatingiftherealpartdividesthesurfaceintotwodisjointhalves;otherwise,itiscallednon-separating.Throughoutthepresentwork,wefocusonfibrationsoverS2,andtherealstructureconsideredonS2istheoneinducedfromthecomplexconjugation,denotedconj,11onCP.BydefinitionofrealLefschetzfibrations,fibersovertherealpartSofTheauthorwaspartiallysupportedbytheEuropeanCommunity’sSeventhFrameworkPro-gramme([FP7/2007-2013][FP7/2007-2011])undergrantagreementno[˙258204],aswellasbytheFrenchAgencenationaledelarecherchegrantANR-08-BLAN-0291-02.1
2NERMI˙NSALEPC˙Iconjinheritrealstructuresfromtherealstructureofthetotalspace.Suchfibersarecalledreal(fibers).ArealellipticLefschetzfibrationhas3typesofrealregularfibers.Theyaredistinguishedbythenumberofrealcomponentsthatcanbe0,1,2(onlythestructurewith2realcomponentsisseparatingonT2).Forthesakeofsimplicity,mostofthetimeweassumethattherealpartS1of(S2,conj)isoriented.Fibrationswithsuchafeaturearecalleddirected.Moreover,weconsidermainlyfibrationswhichadmitarealsection(asectioncompatiblewiththerealstructures).Butthecasesofnon-directedfibrationsaswellasoffibrationswithoutarealsectionarealsocovered.Theonlyessentialconditionimposedonfibrationsisthatallthecriticalvaluesarereal.Fibrationswiththispropertyarecalledtotallyreal.OurmaininterestisthetopologicalclassificationoftotallyrealellipticLefschetzfibrations.TworealLefschetzfibrationswillbeconsideredisomorphiciftheydifferbyorientationpreservingequivariantdiffeomorphisms.RecallthattheclassificationofellipticLefschetzfibrationsoverS2hasbeenknownforover30years.ItisduetoB.MoishezonandR.Livne´[4]that(non-real,relativelyminimal)ellipticLefschetz2fibrationsoverSareclassified(uptoisomorphism)bythenumberofthecriticalvalues.Thelatterisdivisibleby12andtheclassofellipticLefschetzfibrationswith12ncriticalvaluesisdenotedbyE(n),nN.Furthermore,E(1)isisomorphictothefibrationCP2#9CP2CP1,obtainedbyblowingupapencilofcubicsinCP2,andE(n)=E(n1)]FE(1)where]Fstandsforthefibersum.Inthisnote,wegivetherealversionofthisresultfortotallyrealellipticLefschetzfibrations.Theclassificationisobtainedbymeansofcertaincombinatorialobjectsthatwecallnecklacediagrams.NecklacediagramsarecombinatorialcounterpartsofrealLefschetzchainsintroducedin[6].MainresultsofthisworkarepresentedasTheorem4.1andTheorem7.1inwhichwetreatthecasesofdirectedtotallyrealellipticLefschetzfibrationsadmittingarealsectionand,respectively,thosefibrationspossiblywithoutarealsection.Asimmediatecorollaries(Corollary4.4,respectively,Corollary7.2)ofthesetheorems,weobtainthatnon-directedtotallyrealellipticLefschetzfibrationsadmittingasectionareclassifiedbytheirnecklacediagrams(defineduptosymmetryandwiththeidentitymonodromy),whilethosefibrationspossiblywithoutarealsectionareclassifiedbythesymmetryclassesoftheirrefinednecklacediagramswiththeidentitymonodromy.AsaconsequenceofCorollary4.4,weobtainanexplicitlistoftotallyrealE(1)andE(2)thatadmitarealsection.Weinvestigatethealgebraicrealizationsofthesefibrationsandshowthatcertainfibrationsonthelistarenotalgebraicallyrealizable.Wealsoconsidersomeoperationsonthesetofnecklacediagrams:mild/harshsums,flip-flopsandmetamorphoses.Theseoperationsallowustoconstructnewnecklacediagramsfromthegivenones.Bymeansoftheseoperations,weconstructanexampleofarealLefschetzfibrationwhichcannotbewrittenasafibersumoftworealfibrations(seeProposition6.5).Acknowledgements.Thematerialpresentedhereisextractedfrommythesis.IamdeeplyindebtedtomysupervisorsSergeyFinashinandViatcheslavKharlamovfortheirguidanceandlimitlesssupport.IowemanythankstoAndyWandwhowrotetheprogramtogettheexplicitlistofnecklacediagrams,whoalsoeditedmypresentandpastarticlesasanativeenglishspeaker.IthankAlexDegtyarevforhispreciouscommentsonthefirstmanuscriptandforproductivediscussions.