1 Hyperbolic Geometry The fact that an essay on geometry such as ...
17 Pages
English

1 Hyperbolic Geometry The fact that an essay on geometry such as ...

-

Downloading requires you to have access to the YouScribe library
Learn all about the services we offer

Description

  • exposé
1 Hyperbolic Geometry The fact that an essay on geometry such as this must include an additional qualifier signifying what kind of geometry is to be discussed is a relatively new requirement. From around 300 B.C. until the early 19th century, 'geometry' meant Euclidean geometry, for there were no competing systems to rival the intrinsic truth of Euclid's geometry put forth in his Elements. But a particularly troublesome piece of the Euclidean puzzle began to lead thinkers down new avenues of geometrical description.
  • angle measure of a straight line
  • euclid
  • parallel postulate
  • pq
  • euclidean geometry
  • parallel lines
  • right angles
  • side
  • angle
  • line

Subjects

Informations

Published by
Reads 13
Language English

ECSE425Lecture20:
CacheBasics
H&PAppendixC
©2011Gross,Hayward,Arbel,Vu,Meyer
Textbookfigures©2007ElsevierScienceLastTime
•  IntroducPontoMemoryHierarchy
•  Whatarecaches?
•  Whycache?
•  FourQuesPons
– Q1:Blockplacement
©2011Gross,Hayward,Arbel,Vu,Meyer;
ECSE425,Fall2011,Lecture20 2©2007ElsevierScienceToday
•  TwoQuesPons:
– Q1:Blockplacement
– Q2:BlockidenPfica on
©2011Gross,Hayward,Arbel,Vu,Meyer;
ECSE425,Fall2011,Lecture20 3©2007ElsevierScienceFourMemoryHierarchyQuesPons
MainmemoryisdividedintoblockseachconsisPng
ofseveraldataelements(e.g.bytes)
1.  Blockplacement
– Wherecanablockbeplacedintheupperlevel?
2.  BlockidenPfica on
– Howisablockfoundifitisintheupperlevel?
3.  Blockreplacement
– Whichblockshouldbereplacedonamiss?
4.  Writestrategy
– Whathappensonawrite?
©2011Gross,Haward,Arbel,Vu,Meyer;
ECSE425,Fall2011,Lecture19 4©2007ElsevierScienceQ1:BlockPlacement
•  Fullyassocia ve
– Ablockcanappearanywhereinthecache
– Slowandcomplex,butthebesthitrate
•  Directmappedcache
– Eachblockcanonlyappearinoneplaceinthecache
•  Blockaddressmod#blocksincache
– Fastandsimple,butmoremisses
•  Setassocia vecachesstrikeabalance
©2011Gross,Haward,Arbel,Vu,Meyer;
ECSE425,Fall2011,Lecture19 5©2007ElsevierScienceSetAssocia veCaches
•  Ablockcanbeplacedinasetofplacesinthe
cache(calledways)
•  First,mapablockontoaset
– Blockaddressmod#setsincache
•  Theblockcanbeplacedanywhereinthatset
– nblocksinaset=>n-waysetassocia ve
©2011Gross,Haward,Arbel,Vu,Meyer;
ECSE425,Fall2011,Lecture19 6©2007ElsevierScienceBlockPlacement
C
f
M
©2011Gross,Haward,Arbel,Vu,Meyer;
ECSE425,Fall2011,Lecture19 7©2007ElsevierScienceGeneralizedAssocia vity
•  Ingeneral,mblocksincache,nblocksinaset,s
setsincache
– m=s*n
•  n-waysetassocia ve=> n>1ands>1
– fullyassocia ve=> n=mands=1(m-ways.a.)
– directmapped=>n=1ands=m(1-ways.a.)
•  Mapping:setnumberiscalled“index”
•  index=block#mods
©2011Gross,Haward,Arbel,Vu,Meyer;
ECSE425,Fall2011,Lecture19 8©2007ElsevierScienceRealCaches
•  Mostprocessorcachestodayare
– Directmapped,orn-waysetassocia ve, n≤8
•  Full-associa vity reservedforsmall,specialized
memories
– E.g.,Transla onLook-asideBuffer(TLB)
©2011Gross,Haward,Arbel,Vu,Meyer;
ECSE425,Fall2011,Lecture19 9©2007ElsevierScienceQ2:BlockIdenPfica on
•  Cachesholdasubsetofblocksinmainmemory
– Manyblocksmaptooneorafewentriesincache
– Howisablockfoundifitisinthecache?
•  Dividethememoryaddressintofields
•  Blockaddress(higher-orderbits)
– Indicatestheblocknumberinmemorywewillaccess
•  Blockoffset(lower-orderbits)
– Indicatesthedatawithinablockwewanttoretrieve
©2011Gross,Hayward,Arbel,Vu,Meyer;
ECSE425,Fall2011,Lecture20 10©2007ElsevierScience