Read anywhere, anytime
Description
Subjects
Informations
Published by | pefav |
Reads | 6 |
Language | English |
Exrait
SplitvsModular
Decomposition
(thecaseoftotallydecomposablegraphs)
March29,2007
ChristophePaul
CNRS-LIRMM-Universite´MontpellierII,France
JointworkwithE.Gioan(CNRSLIRMM)
)shpargelbasopmocedyllatotfoesaceht(noitisopmoceDraludoMsvtilpSluaP.Ckrowgniog-nodnanoisulcnoCshpargelbasopmocedyllatotfonoitacfiidomxetreVseiranimilerpdnasnoitinfieD
edyllatotfonoitacfiidomxetreVseiranimilerpdnasnoitinfieDConclusionandon-goingwork
3
Vertexmodificationoftotallydecomposablegraphs
2
1
Definitionsandpreliminaries
)shpargelbasopmocedyllatotfoesaceht(noitisopmoceDraludoMsvtilpSluaP.Ckrowgniog-nodnanoisulcnoCshpargelbasopmoc
krowgniog-nodnanoisulcnoCshpargelbasopmocedyllatotfonoitacfithereisabijection
ρ
v
fromthetree-edgesincidentto
v
tothe
verticesof
G
v
ieachnode
v
on
k
vertices
dF∈v
oA
graph-labelledtree
isapair(
T
,
F
)with
T
atreeand
F
asetof
graphssuchthat:
mGraphlabeledtree
xetreVseiranimilerpdnasnoitinfieD)shpargelbasopmocedyllatotfoesaceht(noitisopmoceDraludoMsvtilpSluaP.CGhpargaybdellebalsiTfokeergedfo
thereisabijection
ρ
v
fromthetree-edgesbetween
v
and
itschildrentotheverticesof
G
v
eachnode
v
with
k
childrenof
T
islabelledbyagraph
G
v
∈F
on
k
vertices
A
rootedgraph-labelledtree
isa
and
F
asetofgraphssuchthat:
F
)with
T
arootedtree
Rootedgraphlabeledtree
)shpargelbasopmocedyllatotfoesaceht(noitisopmoceDraludoMsvtilpSluaP.C,T(riapkrowgniog-nodnanoisulcnoCshpargelbasopmocedyllatotfonoitacfiidomxetreVseiranimilerpdnasnoitinfieD
krowgniog-nodnanoisulcnoCshpargelbasopmocedyllatotxy
∈
E
(
G
S
(
T
,
F
))iff
ρ
v
(
uv
)
ρ
v
(
vw
)
∈
E
(
G
v
),
uv
,
vw
tree-edgesonthe
x
,
y
-pathin
T
and
v
=
lca
T
(
x
,
y
).
fGivenarootedgraphlabelledtree(
T
,
F
),thegraph
G
M
(
T
,
F
)
hastheleavesof
T
asverticesand
onoitacfiidomxetreVseiranimilerpdnasnoitinfieD)shpargelbasopmocedyllatotfoesaceht(noitisopmoceDraludoMsvtilpSluaP.C
xy
∈
E
(
G
S
(
T
,
F
))iff
ρ
v
(
uv
)
ρ
v
(
vw
)
∈
E
(
G
v
),
uv
,
vw
tree-edgesonthe
x
,
y
-pathin
T
and
v
=
lca
T
(
x
,
y
).
Givenarootedgraphlabelledtree(
hastheleavesof
T
asverticesand
F
),thegraph
G
M
(
T
,
F
)
)shpargelbasopmocedyllatotfoesaceht(noitisopmoceDraludoMsvtilpSluaP.C,Tkrowgniog-nodnanoisulcnoCshpargelbasopmocedyllatotfonoitacfiidomxetreVseiranimilerpdnasnoitinfieD
)shpargelbasopmocedyllatotfoesaceht(noitisopmoceDralud∀
x
∈
V
\
M
,
either
M
⊆
N
(
x
)or
M
∩
N
(
x
)=
∅
oAsubsetofvertices
M
ofagraph
G
=(
V
,
E
)isa
module
iff
MModules
svtilpSluaP.Ckrowgniog-nodnanoisulcnoCshpargelbasopmocedyllatotfonoitacfiidomxetreVseiranimilerpdnasnoitinfieD
atotfonoitacfiidomxetreVseiranimilerpdnasnoitinfieDxy
∈
E
(
G
S
(
T
,
F
))iff
ρ
v
(
uv
)
ρ
v
(
vw
)
∈
E
(
G
v
),
∀
tree-edges
uv
,
vw
onthe
x
,
y
-pathin
T
Givenagraphlabelledtree(
T
,
F
),thegraph
G
S
(
T
,
F
)hasthe
leavesof
T
asverticesand
)shpargelbasopmocedyllatotfoesaceht(noitisopmoceDraludoMsvtilpSluaP.Ckrowgniog-nodnanoisulcnoCshpargelbasopmocedyll
xy
∈
E
(
G
S
(
T
,
F
))iff
ρ
v
(
uv
)
ρ
v
(
vw
)
∈
E
(
G
v
),
∀
tree-edges
uv
,
vw
onthe
x
,
y
-pathin
T
Givenagraphlabelledtree
leavesof
T
asverticesand
F
),thegraph
G
S
(
T
,
F
)hasthe
)shpargelbasopmocedyllatotfoesaceht(noitisopmoceDraludoMsvtilpSluaP.C,T(krowgniog-nodnanoisulcnoCshpargelbasopmocedyllatotfonoitacfiidomxetreVseiranimilerpdnasnoitinfieD
.C;2>for
x
∈
A
and
y
∈
B
,
xy
∈
E
iff
x
∈
N
(
B
)and
y
∈
N
(
A
).
|
A
|
>
2,
|
B
|
split
iff
Abipartition(
A
,
B
)oftheverticesofagraph
G
=(
V
,
E
)isa
ilpSt
krowgniog-nodnanoisulcnoCshpargelbasopmocedyllatotfonoitacfiidomxetreVseiranimilerpdnasnoitinfieD)shpargelbasopmocedyllatotfoesaceht(noitisopmoceDraludoMsvtilpSluaP
Access to the YouScribe library is required to read this work in full.
Discover the services we offer to suit all your requirements!