Identification of the pointwise Holder exponent of Generalized Mutifractional Brownian Motion
16 Pages
English
Gain access to the library to view online
Learn more

Identification of the pointwise Holder exponent of Generalized Mutifractional Brownian Motion

-

Gain access to the library to view online
Learn more
16 Pages
English

Description

Identification of the pointwise Hölder exponent of Generalized Multifractional Brownian Motion Antoine Ayache USTL (Lille) Cassino December 2010 A.Ayache (USTL) Identification of GMBM Cassino December 2010 1 / 16

  • positive deterministic constant

  • generalized quadratic

  • course lim

  • quadratic variations

  • h?1 v˜


Subjects

Informations

Published by
Reads 32
Language English

Exrait

(USTL)Identicationroferthe2010pMoint16wiseDecembH?lyderofexpDecemonent1ofche@math.univ-lille1.fGeneralizedCassinoMultifractionalerBroA.AwnianacheMotionIdenticationAntoineGMBACassinoybache2010USTL/(Lille)Antoine.Aya! ( ) 2N
[ ; ] [ ; ] ( ; ) k k = ( )
( ) = ( )!+1
! ( ) C (R) [ ; ]2N
b b() = jj = () = jj
( )b b b () = ( ) ( )
f ( )g ( ) 2N2[ ; ]
Z +1 X
b c( ) = () ():
( )+ =jjR =
LipschitzwhenandbonnLetnthehof2nLetXmotivation03rameterandisandefit01ductionW1-Introthint10ofwhenhndhassetsequenceebWn;1fotrwidehatfalldntnof10andthvalues,with.functionsfGMBMnpa0dened1nwhichnn0LipdenedfXsucht0aA.Aeache1Identicationn10GMBeCassinowitharbitraanbh2010ryfthat:2f16nnn1valuesOin,.sequencea.1f(1)2yn(USTL)inoflimMsatisesDecemferb2/2n
P 8 2 [ ; ] : ( ) = ( ) = ;
f ( )g2[ ; ]
f ( )g2[ ; ]
)
b ( );
( ) ( )
= ;:::; [ ] f ( )g 2[ ; ]
=!+1
!
( ( )) 2N
NTdiscretizedrd,Nt;Jaaconditionyexp0ybof1ewnnmaandy1exhibiXt0verydenotesirregula0rthisbhatehavionrb.,shoofAwisenaturalpquestionofwhichtcan0b1etaddresseddiscretizationislimthat,1whethertor,rseenot,theinthatthistcase,Cassinoit2010isXppossible0toonentconstructH?ldereenointbNXahaspathNtheitAt1thattaachestatisticalthatestimatotrhereofNRecallthe16mesh,hcoursetN1taqquXtX0.eInconvergentseminathewerwillthistisunderreticamildspthatphA.AmeansachewhichIdenticationGMBatbaagivensequence,panswointtotquestion,(theostallyrtineaking)gositive.fromythe(USTL)observationofofMXDecemter/3(2)pXrticulaIneitchtheA.Aca(1987)seonofAbFBMedseveralandapptheseroachesonehaveCassinoalreadyTbTheeenopedropbosedus.inapporiationsrderVtoIdenticationestimate2010the,HurstandpaWrameterroachHy(recallandthatthatthisypa(1994)rameteofrinterestequalsrsttowtheispVointthewiseGeneralizedH?lderriationsexpacheonentGMBofbFBM/).ryLetFlandrin,usaqqumentionVsome(1998):ofavelets.theseappappdeveloproaches.bHallGuyandnWL?onoandodevelopdb(1994):IstasBoLandxwilldimenseion;paHall,rWtooTheoofdtandoFroacheseuebaservergerQuadratic(1994):anumbandersecondofoncrossings;QuadraticL?vyaV?hel.andyP(USTL)eltierof(1994):MmaximumDecemlikereliho4o16d;f ( = )g = ;:::;
!
X +e = :
=
e
! +1
e
e = + ;
! +1
11cpNNre0HNositiveBdiscretizedH0VVka.s.,:strictly1ministicNNQ);BHH2(VlogklogN(4)riationHaOne2pVdeter(3)constantGuywhenQuadraticof.aytherefo(USTL)NofNM1DecemperN5p16N1NFBM.BVconverges,Ntocovergeswhena.s.observestoaonA.AandacheL?onIdenticationhaveGMBshoCassinownbthat2010N/2H< < = p
= < <
2 ( ; )
e
X + +
= + :
=
BNriationand1aNGaussianthelimit)rophoQuadraticlBdsNfostandarandthetheQuadraticbVfoaariations;2wheni.e.3rremof40Theo,HhaveLimitto1,VaVnonastandaardexample,CentralNLimit0Theowhenremconvergence:(i.e.ofwithNaforateallofvaluesconvergenHceaN4,232IstasHLangandpaosednonreplaceGaussQuadraticianalimitH)NholdsyfoGeneralizedrVtheriation,QuadraticrVVarateriations.2Inp(Central0rdHconvergencepwithA.ANache2IdenticationHGMBpof1BeedSpCassinoHbp2010/o2rder(5)toyobtain(USTL)aofstandaMrdDecemCentralerLimit6Theo16rem!
!
dmakingcalizinguseyofandGeneralizedsettingQuadraticerVaaedriations,stationaIstaswnianandofLang16haveQuadraticconstructedBenassi,asymhaveptoestimationttheicallyinoMultifractionalrmal(MBM).estimato(USTL)rsDecemof7H?lderloexpGeneralizedonentsVofriations,aCohenwideIstasclassextendofthisstationamethorytoincrementsnonGaussianrypncrementsroofcessesBro,MotionwhichA.AincludesacheFBM.IdenticationByGMBMCassinoLater,bin20101998,/by2 [ ; ]
f ( = )g = ;:::
f ( )g2[ ; ]
!
( )
2 ( ; ) W ( )
n o