Informationtechnologyimplicationsformathematics—aviewfromtheFrenchrivieraMarcoMaggesiandCarlosSimpsonLaboratoireJ.A.Dieudonne´,CNRSUMR6621Universite´deNice-SophiaAntipolis...latraductionenlangageformalise´neseraitplusqu’unexercisedepatience(sansdoutesfortpe´nible).—NicolasBourbakiHancmarginisexiguitasnoncaperet.—PierredeFermatWefeelthatthiscontexthasnowchanged.Foralongtime,“mathemat-ics”and“computerscience”havedesignatedwidelyseparateddisciplines,overlappingonlyinareaswhichwereconsidered“fringe”oneitherside.ThiswasnotreallyahistoricalviewsinceVonNeumann,Turingandoth-ersweremathematicianswhosetoffintotheworldofcomputers.Wearenowenteringatimeofreconvergencewhichhasallkindsofimplications.Aprominentoneistheincreasingrealityofcomputerproofverificationasappliedtostandardmathematicalwork.Thishasbeenunderdevelopmentforquiteawhile,butjustnowitisbecomingrealistictoimagineapplyingittoawidearrayofmathematicalsituations.Theideaistowritemathematicaldocumentsinalanguagesuchthatthemathematicalaccuracyisthenverifiedbyacomputerprogram.Thisshouldbecomparedwithotherdifferentbutrelatedutilisationsofthecomputer:—typesetting:wearelookingathavingthecomputerunderstandtheargu-ment,notjustthevisualexpressiononthepage,neverthelessonasociolog-icalleveltherearemanysimilaritieswiththeTEXproject;—computeralgebraandothercalculationsystems:wearelookingatthelogicalor“proof”aspectofmathematics,includingalsotheproblemofintroducing,definingandmanipulatingnewabstractconcepts,whichisdif-ferentfromjusthavingthecomputerdoaspecificcalculation,butofcoursecalculationisoneprimordialaspectofmathematicalproofandoneofthebigproblemsishowtointegratethetwointoacoherentwhole;—computerproofsearch:wearenot,asabasicrequirement,askingthecomputertofindtheproofofsomething,onlytoverifytheproofthatthemathematiciangives.Oneofourfavoritereactionsfromacolleague(whoshallremainnameless)was:so,howisyourprojectoftrivializingmathematicsgoing?Butwearenottalkingabouttrivializingmathematics:themathematician1
hastosupplytheproof,becauseautomationcanperhapsdealwithwhatweregardassmalldetailsbutwillnever(?)replacethehumanworkofconcievingtheoutlineofacomplicatedargument.Afavoriteanalogyiswiththeconstructiontrade.Atfirst,everythingwasconstructedbylayingstoneorothermaterialbyhand.Ifyouwantedtobeintheconstructiontradeyouhadtoknowhowtolayastonewallthatwasstraight(noteasy).Nowdayswehavenewmaterialsandnewtools.Ifyouwanttobeintheconstructiontrade,youshouldknowhowtodriveatractorandhowtouseacircularsaw,butyoudon’treallyneedtoknowhowtobuildastonewallunlessyouspecializeinthatsortofthing.Whenwelookbackatthepyramidswesay“Wow!Ican’tbelievetheyactuallybuiltthosethingswithoutacrane!”.Inafewhundredyears,peoplewilllookbackatFermat’slasttheoremandsay“Wow!Ican’tbelievetheyactuallyprovedthatthingbyhand!”.Justastheadventofnewtechniquesintheconstructionindustryradi-callyalteredthelandscapeofbuildingswebuild,sotheadventofnewtoolsfordoingmathematicswillradicallyalterthetypeofmathematicswefind,andinwayswecanonlybarelyimaginerightnow.Itseemsimportantthatmathematiciansjointhefraysoastoopenupourunderstandingofwhatthefuturemighthold.Currentlymanydifferentsystemsareunderexperimentation:a“system”isaprogramwhichverifiesproofswritteninaspecifiedlanguage,plusallofthenecessarysupportmaterialincludingdocumentationforthelanguageandhowtoprovethingsinit;alibraryofresultsonwhichuserscanbuild;activesupportinthesenseofcontinuallyimprovingtheprogramtotakeintoaccountproblemswhichmaybeencounteredorimplementnewfunctional-ities,togetherwithmaintenanceofbackward-compatibilityforthelibrary(thisallrequiresanon-negligableamountofcomputerscience);andagroupofusersextendingbeyondtheimmediatecircleofthosewhoconcievedandmaintainedtheprogram.Thissubjecthasrecentlymadethenewsinseveraldifferentvenues,evenanarticleintheNewYorkTimes[Cha04].OneofthemorenotableeffortsatgettingthemathematicalcommunityinvolvedinthesubjectisThomasHales’“flyspeckproject”[Hal].Wewilllookatthecurrentstateoftheartwithrespecttoafewofthemainsystemswhicharecurrentlyavailable:ACL2,Coq,Isabelle,Mizar,NuPRL,...andalsobrieflyconsidersomeotherprojectswhicharenewerorpresentoriginalaspectssuchasPVS,Phox,MetaMath-Ghilbert,IMPS,...togetherwithsometransversalwebsitessuchasMKMnet,HELM,Omega,MathWeb/OMDoc.Wewillalsobrieflydiscusswhatthismightbringfor2
thefuture,includingweb-basedapproachestomathematicaleducation.Werestrictourattentionmostlytoopensystems.Thisispartlybecauseitismuchmoredifficulttoobtaininformationaboutproprietaryones(inparticularyouhavetopayforthem!),andalsothisinformationmaynotbeallthatrelevantotherthantousersoftheparticularsystem.Nonethe-lessweshouldmentiononemajorproprietarysystemMathematicawhichapparentlyhaslatenttheorem-verificationpossibilities.Mostoftheinformationherehasbeengainedbysearchingtheinternetwithstandardtools.Theinterestedreadermayreadilycontinuethatpathandfindmuchfulleranddeeperinformationthanwecouldcover.Thathav-ingbeensaid,wewillnotalwaysincludetheproperreferencesforsourcesbecause(1)therewouldbetoomany,and(2)itisallavailableontheweb(wetrytoavoidreferingtothingsyouwouldhavetopayfor).Alltold,thisrepresentsanotherinformation-technologyphenomenonwhichhasanenor-mousimpactonmathematics,whichwecoulddiscussatlengthbutthatwoulddepassthescopeofashortarticle.(Athirdphenomenon,thepos-sibilityofdoingmathematicalcommunicationbyvisioconference,doesn’tseemtoworkwellenoughyetthatwecoulddomorethanmentionitpar-enthetically.)1“Iwouldliketocertifymylatesttheorem”Weexpectthattheformalizationofanontrivialtheoremmayrequireseveralyears.Togivetheidea,wecanciteThomasHaleswhoplanstocertifyhisproofoftheKeplerConjectureintwentyyears.Moreover,notallsubjectsofmathematicshaveanequalprobabilityofsuccessinformalizationwithtoday’stechnology:wemayexpectthatageometricalargumentof,say,knottheorywouldbeintrinsicallymoredifficulttoformalizethanaresultofalgebraorcombinatoriallogic.Asidefromthis,a“classical”mathematicianwouldprobablyneedtoenrichhismathematicalbackgroundwithavarietyoftopicsfromotherdomainssuchaslogicandcomputer-scienceinordertobeeffectiveintheproductionofaformaldocumentreadablebyacomputer.Thetrainingmayrequireanonnegligibletime(choosingasystem,understandingitslogicandbecomingproficientinitsuse,learningwhichresultsarealreadymadeavailableforthatsystem,etc).Ontheotherhand,thiseffortcanberepaidinseveralways.Firstofall,toreachacompleteformalizationofatheoremcanbeaveryinterestingexperience,bothforyoungandforseniorresearchers,thatcanberarely3