 # COMPUTATION OF MILNOR NUMBERS AND CRITICAL English
9 Pages

Description

Niveau: Supérieur, Doctorat, Bac+8
COMPUTATION OF MILNOR NUMBERS AND CRITICAL VALUES AT INFINITY ARNAUD BODIN Abstra t. We des ribe how to ompute topologi al obje ts asso iated to a om- plex polynomial map of n > 2 variables with isolated singularities. These obje ts are: the aÆne riti al values, the aÆne Milnor numbers for all irregular bers, the riti al values at innity, and the Milnor numbers at innity for all irregular bers. Then for a family of polynomials we dete t parameters where the topology of the polynomials an hange. Implementation and examples are given with the omputer algebra system Singular. 1. Introdu tion 1.1. Review on the lo al ase. Let g : C n ; 0 ! C ; 0 be a germ of polyno- mial map with isolated singularities. One of the most important topologi al obje t atta hed to g is its lo al Milnor number [Mi?: 0 = dim C C fx 1 ; : : : ; x n g=Ja (g) where Ja (g) = ( g x 1 ; : : : ; g x n ) is the Ja obian ideal of g. It is possible to ompute 0 with the help of a Grobner base.

• polar urve

• proje tion

• lo al - onstant

• ideal cbar

• topologi ally

• milnor numbers

• ramanujam-timourian - onstant theorem

• has strong

Subjects

Informations

Report a problem

COMPUT
A
TION
2
rst
s
OF
of
MILNOR
a
NUMBERS
^
AND
the
CRITICAL
b
V
C
ALUES
h
A
er
T
n
INFINITY
1]
ARNA
!
UD
,
BODIN
1
Abstra
the

(see
W
;
e
function
describ

e
main
ho
Theorem
w
g
to
(

trivial
top
a
ological
ology
ob
b

f
asso
of

1
to

a
1

of
plex
b
p
#
olynomial
2003.
map
is
of
T
n
1]
>
Milnor
2
g
v
for
ariables

with
Ti
isolated
and
singularities.

These
)
ob
s

olo
are:
ation
the
w
ane
f

study
v
not
alues,
b
the
f
ane
o
Milnor
h
n

um
B
b
B
ers
b
for
w
all
and
irregular
the
b
for
ers,
a
the

the
v
is
alues
m
at
;
innit
Date
y
singularities,
,
g
and
smo
the
s
Milnor

n
[0
um
e
b
lo
ers
um
at
0
innit
).
y
ological
for
is
all
Raman
irregular
t
b
([LR
ers.
.
Then
=
for
0
a
)
family
(
of
;
p
the
olynomials
s
w
[0
e
a

al
parameters
1.2.
where
aims
the

top
e
ology
olynomial
of
C
the
.
p
the
olynomials
f

the

hange.
of
Implemen
viour
tation
innit
and
[Br].
examples
p
are
e
giv
n
en

with
nite
the
v

,
algebra
B
system
[
Singular
the
.
w).
1.
of
Intr
is
oduction
ob
1.1.
giv
Review
ology
on
ers
the

lo

There

v
Let
lo
g
t
:
2)
C
n
n

;
b
0
multi-inte
!
(
C
a
;
B
0
B
b
June
e
isolated
a

germ
that
of
s
p
a
olyno-
oth
mial
of
map
.
with
o
isolated
h
singularities.
2
One
;
of
w
the
asso
most
the
imp

ortan
n
t
b
top

ological
(
ob
s

The

top
hed
result
to
families
g
L
is
e-
its
ujam-Timourian
lo
-constan

theorem.
al
1
Milnor
,
numb

er
If
[Mi
6

3

0
(
=
s
dim
is
C
onstant
C
s
f
[0
x
1]
1
then
;
family
:
g
:
)
:
2
;
;
x
is
n
top
g

=
ly

family.
(
Motiv
g
and
)
for
where
global

No
(
w
g

)
p
=
function
(
:

n
g
C

The
x
of
1
top
;
of
:
is
:
just
:
glueing
;
lo

studies
g
ecause

the
x
eha
n
of
)
at
is
y
the
see

T
ideal
the
of
olynomial
g
w
.

It
\Milnor
is
um
p
ers"
ossible
,
to
and

sets

0
alues
with
a
the
B
help
,
of
=
a
a
Gr
B
obner
(see
base.
denitions
F
elo
or
The
example
aim

this
h
ork
a
to

these
motiv

ates
to
the
e

top
algebra
of
system
b
Singular
f
,
(

)
No
all
w
2
w
.
e
is

global
a
ersion
family
the
(

g
-constan
s
theorem
)
Theorem
s
where
2
Milnor
[0
um
;
er
1]
0
,
replaced
with
y
g
Milnor
s
ger
:
=
C
;
n
B
;
;
0
#
!
1
C
#
;
).
0
:
germs
25,
of
1

en expand_more