140 Pages
English
Gain access to the library to view online
Learn more

INSTITUT DE RECHERCHE MATHEMATIQUE AVANCEE Universite Louis Pasteur et C N R S UMR

-

Gain access to the library to view online
Learn more
140 Pages
English

Description

Niveau: Supérieur, Doctorat, Bac+8
INSTITUT DE RECHERCHE MATHEMATIQUE AVANCEE Universite Louis Pasteur et C.N.R.S. (UMR 7501) 7, rue Rene Descartes 67084 STRASBOURG Cedex MIDDLE EAST TECHNICAL UNIVERSITY Department of Mathematics 06531 ANKARA TURQUIE REAL LEFSCHETZ FIBRATIONS par Nermin SALEPCI˙ AMS subject classification : 14P25, 14D05, 57M99, 14J27 Keywords : Lefschetz fibrations, real structure, real Lefschetz fibrations, real elliptic Lef- schetz fibrations, monodromy, necklace diagrams. Mots cles : Fibrations de Lefschetz, structure reelle, fibrations de Lefschetz reelles, fibrations de Lefschetz elliptiques reelles, monodromie, diagrammes de collier.

  • lef- schetz fibrations

  • institut de recherche mathematique

  • thank them

  • lefschetz fibrations

  • yildiray ozan

  • subject fascinating

  • technological research

  • ams subject


Subjects

Informations

Published by
Reads 30
Language English
Document size 1 MB

Exrait

¶ ¶INSTITUT DE RECHERCHE MATHEMATIQUE AVANCEE
Universit¶e Louis Pasteur et C.N.R.S. (UMR 7501)
7, rue Ren¶e Descartes
67084 STRASBOURG Cedex
MIDDLE EAST TECHNICAL UNIVERSITY
Department of Mathematics
06531 ANKARA TURQUIE
REAL LEFSCHETZ FIBRATIONS
par
_Nermin SALEPCI
AMS subject classiflcation : 14P25, 14D05, 57M99, 14J27
Keywords : Lefschetz flbrations, real structure, real Lefschetz flbrations, real elliptic
Lefschetz flbrations, monodromy, necklace diagrams.
Mots cl¶es : FibrationsdeLefschetz, structurer¶eelle, flbrationsdeLefschetzr¶eelles, flbrations
de Lefschetz elliptiques r¶eelles, monodromie, diagrammes de collier.To my sisters, Yasemin and Nesrin, who let me learn how to share sel essly...Acknowledgments
I would like to express my deep gratitude to my supervisors Sergey Finashin and
Viatcheslav Kharlamov. It was a great experience to carry out my thesis under their
supervision. They helped me a lot to flnd solutions not only to the mathematical
problems I was dealing with but also to all kinds of administrative problems I was
faced with during my doctoral studies. Their profound vision of mathematics has
guided me all the way long. They taught me with patience how to discover the beauty
ofrealLefschetzflbrations. Iwholeheartedlythankthemforsuggestingmetoworkon
realLefschetz SinceIfoundthesubjectfascinating,Ienjoyedlearningmore
and more about it as well as working seriously on its subtleties throughout my Ph.D.
Both Sergey Finashin and Viatcheslav Kharlamov were available anytime I wished to
discuss certain points with them. I feel that words are flnite to express my gratitude
to them for having allowed me to acquire a part of their great research experience.
˜I would like to thank Alexander Degtyarev, Turgut Onder, Athanase
Papadopoulos, Jean-Jacques Risler for accepting to be jury members and also for their valuable
suggestions.
I thank Y‡ld‡ray Ozan, Mustafa Korkmaz for being available to discuss about my
questions in their specialties. I am indebted to Yildiray Ozan for encouraging me ever
since I started my studies in mathematics.
IamgratefultoCarolineSeriesforherinteresttomyquestionsandforsendingme
some of her articles, and also to Alain Hatcher for pointing out the reference I needed
as well as to Ivan Smith for responding to my questions on Lefschetz flbrations.
I appreciate a lot fruitful discussions I made with my friends F‡rat Ar‡kan,
Er˜wan Brugall¶e, Ozgur˜ Ceyhan, Emrah C»ak»cak, Cyril Lecuire, Slava Matveyev, Ferihe
˜ ˜ ˜Atalan Ozan, Burak Ozba~gc‡, Arda Bu~gra Ozer, Ferit Ozturk,˜ Szilard Szabo, S»ukr˜ u˜
Yal»c‡nkaya, Jean-Yves Welschinger, Andy Wand. I thank Andy for writing the
computerprogramtoobtainthelistofnecklacediagramsandaswellforcheckinggrammar
mistakes of some parts of my thesis.
I would like to thank also Olivier Dodane, Etienne Will, Emmanuel Rey for their
support and help, especially Olivier who helped me in all sorts of Latex problems and
the French translation of the introduction.
IthankTheScientiflcandTechnologicalResearchCouncilofTurkey,theEuropean
5Doctoral College of Strasbourg and the French Embassy in Ankara for supporting
me flnancially, and of course Universit¶e Louis Pasteur and Middle East Technical
University for ofiering me a great environment during my research. I thank also Adem
Bulat, Claudine Bonnin, Guldane˜ Gum˜ us,˜ Catherine Naud, Claudine Orphanides,
˜Nuray Ozkan who helped me a lot in administrative duties.
Finally, IwouldliketosendallmylovetomyfriendsB¶en¶edicte, Bora, Emete,
Emrah, Erin»c, Judith, Kadriye, Setenay, Odile, S»ukr˜ u,˜ Zelo»s who supported me morally
and were always by my side. I send my special thanks to Kadriye who read some
parts of my thesis till late at night in her visit to Strasbourg and suggested me several
grammatical changes.
Of course, I wouldn’t be where I am without my family. I wish to express my
indebtednesstomyparents,tomydearsistersandtoLaurentfortheirendlesssupport
and love.Contents
1 Introduction 9
2 Preliminaries 17
2.1 Lefschetz flbrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Real Lefschetz flbrations . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Factorization of the monodromy of real Lefschetz flbrations 25
3.1 Fundamental factorization theorem for real Lefschetz . . . . 25
3.2 Homology monodromy factorization of elliptic F-flbrations . . . . . . . 28
3.3 The modular action on the hyperbolic half-plane . . . . . . . . . . . . 30
3.4 The Farey Tessellation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Elliptic and parabolic matrices . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Hyperbolic matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Real factorization of elliptic and parabolic matrices . . . . . . . . . . . 36
3.8 Criterion of factorizability for hyperbolic . . . . . . . . . . . 38
4 Real Lefschetz flbrations around singular flbers 43
4.1 Elementary Lefschetz flbrations . . . . . . . . . . . . . . . . . . . . . . 43
4.2tary Real Lefschetz flbrations . . . . . . . . . . . . . . . . . . . 47
4.3 Vanishing cycles of real Lefschetz flbrations . . . . . . . . . . . . . . . 53
4.4 ClassiflcationofelementaryrealLefschetzflbrationswithnonseparating
vanishing cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Classiflcation of elementary real Lefschetz flbrations with separating
vanishing cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
iContents
5 Invariants of real Lefschetz flbrations with only real critical values 64
5.1 Boundary flber sum of genus-g real Lefschetz flbrations . . . . . . . . 64
5.2 Equivariant difieomorphisms and the space of real structures . . . . . 66
5.3 Real Lefschetz chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Real elliptic Lefschetz flbrations with real sections and pointed real
Lefschetz chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Real elliptic Lefschetz flbrations without real sections . . . . . . . . . 79
5.6 Weak real Lefschetz chains. . . . . . . . . . . . . . . . . . . . . . . . . 87
6 Necklace Diagrams 93
6.1 Real locus of real elliptic Lefschetz flbrations with real sections . . . . 93
6.2 Monodromy representation of stones . . . . . . . . . . . . . . . . . . . 97
6.3 The Correspondence Theorem . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Reflned necklace diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5 The Euler characteristic and the Betti numbers of necklace diagrams . 104
6.6 Horizontal and vertical transformations of necklace diagrams . . . . . 105
6.7 Producing new necklace diagrams using necklace connected sum . . . 107
6.8 Classiflcation of real E(1) with real sections via necklace diagrams . . 108
6.9 Real elliptic Lefschetz flbrations of type E(2) with real sections . . . . 110
6.10 Some other applications of necklace diagrams . . . . . . . . . . . . . . 112
A Algebraicity of real elliptic Lefschetz flbrations with a section 114
A.1 Trigonal curves on Hirzebruch surfaces . . . . . . . . . . . . . . . . . . 114
A.2 Real dessins d’enfants associated to trigonal curves . . . . . . . . . . . 115
A.3 Correspondence between real schemes and real dessins d’enfants. . . . 116
A.4 Algebraicity of real elliptic Lefschetz flbrations with real sections . . . 118
Bibliography 120
Index of symbols 128
Index 131
iiINTRODUCTION
La richesse des vari¶et¶es complexes est essentiellement due ?a deux applications
fondamentales: la multiplication par i et la conjugaison complexe. Afln d’obtenir des
vari¶et¶es lisses qui ressemblent le plus possible ?a des vari¶et¶es complexes, on introduit
des g¶en¶eralisations de ces deux applications aux vari¶et¶es lisses de dimension paire. La
g¶en¶eralisation de la multiplication par i est appel¶ee une structure presque complexe,
tandis que la g¶en¶eralisation de la conjugaison complexe est une structure r¶eelle.
Dans cette th?ese, on¶etudie les flbrations de Lefschetz qui admettent une structure
r¶eelle. Rappelons qu’une flbration de Lefschetz d’une vari¶et¶e lisse de dimension 4 est
une flbration de la vari¶et¶e par des surfaces telle que seul un nombre flni de flbres
pr¶esentent une singularit¶e nodale. Les flbrations de Lefschetz apparaissent de fa»con
naturelle sur les surfaces complexes dans l’espace projectif complexe de dimension 3
comme l’¶eclatement des pinceaux g¶en¶eriques de sections hyperplanes. Il est connu que
la monodromie des flbrations de Lefschetz autour d’une flbre singuli?ere est donn¶ee
par un seul twist de Dehn (positif) le long d’une courbe ferm¶ee simple (qu’on appelle
le cycle ¶evanescent) [K] et que les d¶ecompositions de la monodromie (d¶eflnies aux
mouvements de Hurwitz et ?a la conjugaison par un ¶el¶ement du mapping class group
2pr?es) en produit de twists de Dehn classiflent les flbrations de Lefschetz sur D . Une
des propri¶et¶es importantes des flbrations de Lefschetz est qu’elles fournissent un
analogue topologique aux vari¶et¶es symplectiques de dimension 4 (voir S. Donaldson [Do],
R. Gompf [GS]).
L’¶etude des flbrations de Lefschetz r¶eelles est initi¶ee par un travail de S. Yu.
Orevkov [O1] dans lequel il pr¶esente une m¶ethode pour lire la monodromie (en tresses)
1d’une flbration … :C!CP d’une courbe complexe C (invariante par la conjugaison
2 2 1complexe) dansCP ?a partir de la restrictionRP \C !RP . Ici, la flbration …
de C est obtenue ?a partir d’un pinceau de droites r¶eel g¶en¶erique par rapport ?a C.
S. Yu. Orevkov a observ¶e que la monodromie totale est quasi-positive si la courbe C
est alg¶ebrique (c’est- a-dire qu’elle s’¶ecrit comme un produit des conjugu¶es de twists
2positifs) et il en a d¶eduit que certaines distributions d’ovales dansRP ne sont pas
r¶ealisables alg¶ebriquement. Il n’est pas di–cile de voir que si l’on applique cette
3construction aux surfaces dansCP , on n’obtient rien d’autre qu’un pinceau de Lef-Introduction
3schetz qui commute avec la conjugaison complexe standard deCP . Cela fournit un
prototype des flbrations de Lefschetz r¶eelles.
Nous d¶eflnissons une structure r¶eelle sur une vari¶et¶e lisse de dimension 2k de la
fa»con suivante : c’est une involution qui renverse l’orientation sik est impair, et qui la
pr¶eservesik estpair. Aflndeserapprocherlepluspossibledelasituationclassiquede
la conjugaison complexe, on demande en plus que l’ensemble des points flxes, s’il n’est
pasvide, soitdedimensionk. Unevari¶et¶emunied’unestructurer¶eelleestappel¶eeune
vari¶et¶e r¶eelle et l’ensemble des points flx¶es par la structure r¶eelle est appel¶e la partie
r¶eelle. Bien qu’on ne puisse ¶evidemment pas parler de structure r¶eelle sur une vari¶et¶e
de dimension impaire, nous emploierons le terme r¶eel pour les vari¶et¶es qui forment le
bord d’une vari¶et¶e r¶eelle.
Une structure r¶eelle sur une flbration de Lefschetz … : X ! B est une paire
(c ;c ) de structures r¶eelles, c :X !X et c :B!B, v¶eriflant …–c =c –….X B X B X B
Nous ¶etudions les flbrations de Lefschetz ?a difi¶eomorphisme ¶equivariant pr?es. Nous
1consid¶erons¶egalement les flbrations r¶eelles surS qui apparaissent comme bord d’une
flbration de Lefschetz r¶eelle au-dessus d’un disque.
2 2Dans cette th?ese, nous tra^‡tons principalement les cas B = D et B = S . Dans
ces deux cas, nous consid¶erons les structures r¶eelles dont la partie r¶eelle est non vide.
Par abus de notation, les deux structures r¶eelles seront not¶ees conj. En efiet, on peut
2 1identifler S avecCP de sorte que conj soit la conjugaison complexe standard sur
1 2 1CP . De m^eme, (D ;conj) s’identifle ?a un disque de dimension 2 dansCP invariant
par la conjugaison complexe. Dans la plupart des cas, nous supposons que la partie
2r¶eelle de (D ;conj) est orient¶ee. Nous appelons de telles flbrations des flbrations de
Lefschetz r¶eelles dirig¶ees.
Le premier chapitre de cette th?ese contient les d¶eflnitions de base. Dans le
chapitre 2, nous ¶etudions les monodromies des flbrations de Lefschetz r¶eelles en termes
1des monodromies des flbrations r¶eelles sur S . Notons que les flbres F au-dessus de§
1deux points r¶eels r de (S ;conj) h¶eritent d’une structure r¶eelle c d¶eduite de celle§ §
de X. La principale observation est que ces deux structures r¶eelles sont reli¶ees via
la monodromie f par la relation c –c = f. Cette propri¶et¶e de d¶ecomposition est+ ¡
fondamentale pour les r¶esultats obtenus dans cette th?ese. Dans la derni?ere section du
1chapitre 2, nous donnons une classiflcation des flbrations r¶eelles sur S dont le genre
2