Introduction Graph estimation Adaptive tests Minimax bounds
57 Pages
English
Gain access to the library to view online
Learn more

Introduction Graph estimation Adaptive tests Minimax bounds

-

Gain access to the library to view online
Learn more
57 Pages
English

Description

Introduction Graph estimation Adaptive tests Minimax bounds Estimation and tests for Gaussian graphical models Nicolas Verzelen Workshop on random graphs 1/28

  • ?? z

  • introduction graph

  • markov local

  • estimation adaptive

  • ?? z?

  • tests minimax

  • undirected graphical

  • interaction between


Subjects

Informations

Published by
Reads 34
Language English
Document size 1 MB

Exrait

Intro
duction
Graph
estimation
on
mo
erzelen
A
Gaussian
daptive
Nicolas
tests
o
Minimax
graphs
b
graphical
ounds
dels
Estimation
V
and
W
tests
rkshop
fo
random
r
1/28−= ( ,..., )∼N ( ,Ω )+ +
Ω
Γ :={ ,..., + }
= (Γ, )
( ) :
2
1
3
5
4
0
1
ne
rs
1
tests
p
A
1
G
singula
Minimax
r.
undirected
p
daptive
Z
neighb
1
a
Z
Graph
1
b
Z
E
consider
nite
e
graph.
W
G
del
a
p
estimation
mo
o
1
of
graphical
in
G
.
Undirected
duction
ounds
Intro
non
2/28−= ( ,..., )∼N ( ,Ω )+ +
Ω
Γ :={ ,..., + }
= (Γ, )
( ) :
2
1
3
( ⊥⊥ )|−{ , ( )} ( )
5
4
r.
singula
non
p
e
tests
at
1
a
1
Graph
0
ect
G
del
1
ounds
p
G
1
ert
p
with
Z
G
1
a
nite
mo
undirected
ne
graph.
b
ne
Z
1
a
p
G
Z
rop
a
y
Z
a
consider
resp
neighb
to
o
if
rs
Z
of
W
a
Z
in
graphical
G
Undirected
.
G
Z
a
satises
Minimax
the
daptive
Ma
ne
rk
A
ov
estimation
lo
duction
cal
Intro
E
2/28−= ( ,..., )∼N ( ,Ω )+ +
Ω
Γ :={ ,..., + }
= (Γ, )
( ) :
2
1
3
( ⊥⊥ )|−{ , ( )} ( )
5
4
⇐⇒
∈Γ
p
1
1
Z
Undirected
graphical
G
e
r.
tests
singula
Graph
non
Z
1
a
E
ounds
0
Z
nite
resp
undirected
the
graph.
1
ne
consider
G
G
1
mo
a
ne
p
b
1
A
rk
a
p
del
ert
to
fo
Z
any
cal
p
a
.
Z
.
Z
Z
a
satises
ne
the
W
Ma
del
rk
graphical
ov
Z
lo
G
cal
a
p
Minimax
rop
daptive
ert
estimation
y
is
at
Gaussian
a
mo
with
with
resp
ect
ect
G
to
duction
G
satises
if
lo
Z
Ma
neighb
ov
o
rop
rs
y
of
r
a
a
Intro
in
G
2/28Intro
duction
Graph
genes
een
ro
estimation
interactions
A
genes
daptive
des
tests
ertices
Minimax
et
b
w
ounds
their
Ex.
that
1
:
:
V
Genetic
:
net
b
w
w
o
t
rk
o
of
and
E.
p
Coli
ducts
No
3/28Intro
duction
Graph
estimation
(RNAm)
=
gene
A
ranscriptomic
daptive
of
tests
ression
Minimax
T
b
data
ounds
measures
T
the
ranscriptomic
exp
data
levels
analysis
4/28Intro
duction
Graph
using
in
rt
estimation
the
A
:
daptive
net
tests
Analysis
Minimax
endence
b
data.
ounds
a
T
this
ranscriptomic
o
data
data.
analysis
of
T
dep
ranscriptomic
structure
data
the
=
Goal
measures
Inferring
of
pa
the
of
gene
gene
exp
w
ression
rk
levels
transcriptomic
(RNAm)
4/28Ω = ⇐⇒ ( ⊥⊥ )|, −{ , }
1 2 3 4 521
1 * * 0 0 *
3 2 0* * * *
3 0 0* * *
5
4 4 0 * * * *
5 0 0* * *
A
a
ert
Z
Prop
duction
a
ounds
a
0
y
estimation
.
Z
b
b
b
Z
b
tests
Graph
daptive
Minimax
Intro
5/28Ω = ⇐⇒ ( ⊥⊥ )|, −{ , }
1 2 3 4 521
1 * * 0 0 *
3 2 0* * * *
3 0 0* * *
5
4 4 0 * * * *
5 0 0* * *
b
Z
a
Z
w
graph.
estimation
0
interp
b
.
a
duction
y
b
ert
of
Prop
daptive
ounds
A
b
Graph
Minimax
T
Z
o
:
enets
a
scientic
b
retation
reduction
the
a
dimension
tests
in
analysis.
statistical
Intro
5/28Intro
duction
Graph
:
and
Ex.
estimation
analysis
A
(2002)
daptive
2
tests
Image
Minimax
Rue
b
Tjelmeland
ounds
6/28