57 Pages
English

Introduction Related Work Attacking Quadratic IP1S Attacking Cubic IP1S Conclusion

-

Gain access to the library to view online
Learn more

Description

Introduction Related Work Attacking Quadratic IP1S Attacking Cubic IP1S Conclusion Practical Cryptanalysis of the Identification Scheme Based on IP1S Charles Bouillaguet 1 Jean-Charles Faugere 2 Pierre-Alain Fouque 1 Ludovic Perret 2 1 ENS, CNRS, INRIA Cascade 2 UMPC (Paris 6), CNRS, INRIA Salsa PKC 2011

  • ip1s conclusion

  • practical cryptanalysis

  • scheme based

  • introduction related

  • work attacking

  • quadratic ip1s

  • attacking cubic


Subjects

Informations

Published by
Reads 11
Language English
Document size 1 MB

2011Intro1ductionPierre-AlainRelatedaWrlesoLudovicrkCascadeAINRIAtt1aaugereckouqueinerretgCNRS,QuadraticUMPCIP1S6),APKttackingBouillaguetCubicJean-ChaIP1SFC2onFclusion1PracticalPCryptanalysi2sENS,ofINRIAthe2Identication(PSchemerisBasedCNRS,onSalsaIP1SCCharlesCubicIntrooductionclusionRelatedAWCotorkIP1SAttackingttIP1SaonckBackinSchgol....QuadraticX
+ +
=
X
( ; ;:::; ) =
; =
aCubic2IP1SiCinoniclusionARecallQuadraticWhatxanQuja1dxrIP1SaticgFckttackingn1ttijoiAjnoarmxIsx?ductionfIntrorkWbxiRelatedicx1X
+ +
=
X
( ; ;:::; ) =
; =
aCubic2IP1SiCinoniclusionARecallQuadraticWhatxanQuja1dxrIP1SaticgFckttackingn1ttijoiAjnoarmxIsx?ductionfIntrorkWbxiRelatedicx1X
+ +
=
X
( ; ;:::; ) =
; =
aCubic2IP1SiCinoniclusionARecallQuadraticWhatxanQuja1dxrIP1SaticgFckttackingn1ttijoiAjnoarmxIsx?ductionfIntrorkWbxiRelatedicx1X X
( ; ;:::; ) = + +
; = =
RelatedCubicttIP1SxCnonIP1SclusionductionRecallrkWhatWaAQuaaxttackingIntrobdxrAaticxFoonrmiIsj?1fijQuadraticigjcninix12ickiax1= 2 (K)
WAgttIntroaifckRelatedinfgreQuadraticoIP1SwithAnttackingDenitionCubicandIP1SaCequivalentonfclusiongQuadraticSFSrkGL.ductionEquivalenceClassesorm= 2 (K)
WAgttIntroaifckRelatedinfgreQuadraticoIP1SwithAnttackingDenitionCubicandIP1SaCequivalentonfclusiongQuadraticSFSrkGL.ductionEquivalenceClassesormX X
= =

I 9: 2 (K): =
I
roveEquivalenceSclassesArefwQuadraticxgequivalent1ttackinginessiickQuestionsjandaCnGLaso,ijndtttoxxiIntroAjxonjfggclusion(ProblemsIP1SrithmicCubicAlgon)AWithrkgof1SW?iIfRelatedcanjeIP1SawitnnSbpijit?ductionX X
= =

I 9: 2 (K): =
I
roveEquivalenceSclassesArefwQuadraticxgequivalent1ttackinginessiickQuestionsjandaCnGLaso,ijndtttoxxiIntroAjxonjfggclusion(ProblemsIP1SrithmicCubicAlgon)AWithrkgof1SW?iIfRelatedcanjeIP1SawitnnSbpijit?duction