73 Pages
English

# Mass Transportation on surfaces

-

73 Pages
English Description

Mass Transportation on surfaces Ludovic Rifford Universite de Nice - Sophia Antipolis Ludovic Rifford Mass Transportation on surfaces

• lebesgue measure

• optimal transport map

• any measurable map

Subjects

##### Lebesgue measure

Informations

Exrait Mass
Transportation on surfaces
Ludovic Riﬀord
Universit´edeNice-SophiaAntipolis
uLdoviciRodraMssrTnasportationonsurfaces measurable
R
,
B
onsutiones
Letµ0andµ1beprobability measures with compact supportinRn. We calltransport mapfromµ0toµ1any measurable mapT:RnRnsuch thatT]µ0=µ1, that is µ1(B) =µ0T1(B),BmeasurableRn.
rfac Monge quadratic problem: Study of transport maps T:RnRnwhich minimize thequadratictransport cost Z
se
dµ0(x).
R
|T(x)− |2 x n
usnocafr Monge quadratic problem of transport maps: Study T:RnRnwhich minimize thequadratictransport cost ZRn|T(x)x|2dµ0(x).
Theorem (Brenier ’91) Assume thatµ0is absolutely continuous with respect to the Lebesgue measure. Then there exists a unique optimal transport map for the quadratic cost fromµ0toµ1.
napsroatitnonous TheBrenimrehToeersnonafrusec
T(x) =rψ(x)µ0a.e. xRn.
Theorem (Brenier ’91) Assume thatµ0is absolutely continuous with respect to the Lebesgue measure. Then there exists a unique optimal transport map for the quadratic cost fromµ0toµ1. There is a convex functionψ:MRsuch that
Monge quadratic problem: Study of transport maps T:RnRnwhich minimize thequadratictransport cost ZR|T(x)x|2dµ0(x). n
ransassTatioportodiv?yuLroMdRciRitaruleg eoThmreerBereinhTcefaurns
Theorem (Brenier ’91) Assume thatµ0is absolutely continuous with respect to the Lebesgue measure. Then there exists a unique optimal transport map for the quadratic cost fromµ0toµ1. There is a convex functionψ:MRsuch that
Monge quadratic problem: Study of transport maps T:RnRnwhich minimize thequadratictransport cost ZRn|T(x)x|2dµ0(x).
Regularity ?
T(x) =rψ(x)µ0a.e. xRn.
ssnopTsaroiontrtavicRLudodMasior Contre-exemple
trivial
Ludovic
Riﬀord
Mass
Transp
ortation
on
surfaces