27 Pages
English

Onera Symposium High Fidelity Flow Simulations Chatillon October

-

Gain access to the library to view online
Learn more

Description

Onera Symposium High Fidelity Flow Simulations Chatillon, October 2010 Efficient Numerical Simulation of Flows Interacting with Deformable Structures Michael Schäfer Contents ?? Introduction ?? Numerical Methods ?? Efficiency and Accuracy ?? Extensions ?? Conclusions Thanks to D. Sternel, S. Yigit, M. Heck, S. Sachs, G. Becker

  • efficient numerical

  • extensions ??

  • fluid fluid

  • monolithic approach

  • coupled partitioned

  • weak coupling

  • structure par structure

  • ?? introduction ??


Subjects

Informations

Published by
Reads 9
Language English
Document size 7 MB

Onera Symposium High Fidelity Flow Simulations
Chatillon, October 2010
Efficient Numerical Simulation of Flows
Interacting with Deformable Structures
Michael Schäfer
Contents
  Introduction
  Numerical Methods
Thanks to
  Efficiency and Accuracy
D. Sternel, S. Yigit,
  Extensions M. Heck, S. Sachs,
  Conclusions G. Becker Fluid-Structure Interaction
•  Deformation by fluid forces
•  Momentum by movement/deformation
•  Change of geometry
TU Darmstadt | FNB | M. Schäfer | 2 Numerical Coupling Mechanisms
Fluid Structure Flexibility Robustness
Weak
coupling
(partitioned)
Strong
coupling
(monolithic)
TU Darmstadt | FNB | M. Schäfer | 3 Partitioned Coupling
Explicit Implicit
Fluid Fluid Fluid Fluid
Structure Structure Structure Structure
t t+Δt t+Δt t
Combines:
- Flexibility of partitioned approach
- Robustness of monolithic approach
TU Darmstadt | FNB | M. Schäfer | 4 Coupled Partitioned Solution Procedure
FSI iteration
Finite-volume Grid
movement FASTEST
MpCCI
Finite-element Fluid
forces FEAP
TU Darmstadt | FNB | M. Schäfer | 5 Grid Movement
TU Darmstadt | FNB | M. Schäfer | 6 Grid Movement Concept
  Blocks:
 Primary moving
 Secondary moving
 Fixed
  Edges:
 Fixed
 Newly generated (linear, cubic splines)
  Faces:
- Fixed
- Coupling
- Copied
- Parallel
- Newly generated (linear, TFI, elliptic)
  Inner grids:
 linear, TFI, elliptic
TU Darmstadt | FNB | M. Schäfer | 7
Elliptic Grid Movement
Parameter domain Physical domain Computational domain
Spekreijse 1995
TU Darmstadt | FNB | M. Schäfer | 8 Example: Error by Grid Deformation
TU Darmstadt | FNB | M. Schäfer | 9 Turbulent FSI and Grid Movement
TU Darmstadt | FNB | M. Schäfer | 10