Read anywhere, anytime
Description
Subjects
Informations
Published by | pefav |
Reads | 10 |
Language | English |
Exrait
PRYMVARIETIESOFSPECTRALCOVERS
TAMA´SHAUSELANDCHRISTIANPAULY
Abstract.
Givenapossiblyreducibleandnon-reducedspectralcover
π
:
X
→
C
overa
smoothprojectivecomplexcurve
C
wedeterminethegroupofconnectedcomponentsofthe
PrymvarietyPrym(
X/C
).Asanimmediateapplicationweshowthatthefinitegroupof
n
-
torsionpointsoftheJacobianof
C
actstriviallyonthecohomologyofthetwistedSL
n
-Higgs
modulispaceuptothedegreewhichispredictedbytopologicalmirrorsymmetry.Inparticular
thisyieldsanewproofofaresultofHarder–Narasimhan,showingthatthisfinitegroupacts
triviallyonthecohomologyofthetwistedSL
n
stablebundlemodulispace.
1.
Introduction
RecentlytherehasbeenrenewedinterestinthetopologyoftheHitchinfibration.TheHitchin
fibrationisanintegrablesystemassociatedtoacomplexreductivegroupGandasmooth
complexprojectivecurve
C
.ItwasintroducedbyHitchin[Hi]in1987,originatinginhisstudy
ofa2-dimensionalreductionoftheYang-Millsequations.In2006,KapustinandWitten[KW]
highlightedtheimportanceoftheHitchinfibrationfor
S
-dualityandtheGeometricLanglands
program.WhiletheworkofNgoˆ[N2]in2008showedthatthetopologyoftheHitchinfibration
isresponsibleforthefundamentallemmaintheLanglandsprogram.InNgoˆ’sworkandlater
intheworkofFrenkelandWitten[FW]acertainsymmetryoftheHitchinfibrationplaysan
importantrole.
InthispaperwefocusontheHitchinfibrationforthegroupG=SL
n
andforalinebundle
M
over
C
,i.e.,themorphism
nM(1)
h
:
M−→A
n
0
=
H
0
(
C,M
j
)
.
2=jHere
M
denotesthequasi-projectivemodulispaceofsemi-stableHiggsbundles(
E,φ
)over
C
ofrank
n
,fixeddeterminantΔandwithtrace-freeHiggsfield
φ
∈
H
0
(
C,
End
0
(
E
)
⊗
M
).Inthe
caseofSL
n
theabovementionedsymmetrygroupoftheHitchinfibrationisthePrymvarietyof
aspectralcover.Forthetopologicalapplicationsthedeterminationofitsgroupofcomponents
isthefirststep.Ngoˆworkswithintegral,thatisirreducibleandreduced,spectralcurves;but
itisinterestingtoextendhisresultstonon-integralcurves.Forreduciblebutreducedspectral
curvesitwasachievedbyChaudouardandLaumon[CL],whoprovedtheweightedfundamental
lemmabygeneralizingNgoˆ’sresultstoreducedspectralcurves.Inthispaperwedeterminethe
groupofconnectedcomponentsofthePrymvarietyfornon-reducedspectralcurvesaswell.
Inordertostatethemaintheoremweneedtointroducesom
S
enotation.Weassociatetoany
spectralcover
π
:
X
→
C
afinitegroup
K
asfollows:let
X
=
i
∈
I
X
i
beitsdecompositioninto
irreduciblecomponents
X
i
,let
X
ired
betheunderlyingreducedcurveof
X
i
,
m
i
themultiplicity
2000
MathematicsSubjectClassification.
Primary14K30,14H40,14H60.
1
2TAMA´SHAUSELANDCHRISTIANPAULY
of
X
ired
in
X
i
and
X
e
ired
thenormalizationof
X
i
.Wedenoteby
π
e
i
:
X
e
ired
→
C
theprojection
onto
C
andintroducethefinitesubgroups
K
i
=ker
π
e
i
∗
:Pic
0
(
C
)
−→
Pic
0
(
X
e
ired
)
⊂
Pic
0
(
C
)
,
aswellasthesubgroups(
K
i
)
m
i
=[
m
i
]
−
1
(
K
i
),where[
m
i
]denotesmultiplicationby
m
i
inthe
PicardvarietyPic
0
(
C
)parameterizingdegree0linebundlesover
C
.Finally,weput
\(2)
K
=(
K
i
)
m
i
⊂
Pic
0
(
C
)
.
I∈iWedenoteby
C
n
themultiplecurvewithtrivialnilpotentstructureoforder
n
havingunderlying
reducedcurve
C
.
WeconsiderthenormmapNm
X/C
:Pic
0
(
X
)
→
Pic
0
(
C
)betweentheconnectedcomponents
oftheidentityelementsofthePicardschemesofthecurves
X
and
C
anddefinethePrym
variety
Prym(
X/C
):=ker(Nm
X/C
)
.
Ourmainresultisthefollowing
Theorem1.1.
Let
π
:
X
→
C
beaspectralcoverofdegree
n
≥
2
.Withthenotationabovewe
havethefollowingresults:
(1)
Thegroupofconnectedcomponents
π
0
(Prym(
X/C
))
ofthePrymvariety
Prym(
X/C
)
equals
π
0
(Prym(
X/C
))=
K
b
,
where
K
b
=Hom(
K,
C
∗
)
isthegroupofcharactersof
K
.
(2)
Thenaturalhomomorphismfromthegroupof
n
-torsionlinebundles
Pic
0
(
C
)[
n
]
to
π
0
(Prym(
X/C
))
givenby
Φ:Pic
0
(
C
)[
n
]
−→
π
0
(Prym(
X/C
))
,γ
7→
[
π
∗
γ
]
,
where
[
π
∗
γ
]
denotestheclassof
π
∗
γ
∈
Pic
0
(
X
)
in
π
0
(Prym(
X/C
))
issurjective.In
particular,weobtainanupperboundfortheorder
|
π
0
(Prym(
X/C
))
|≤
n
2
g
,
where
g
isthegenusofthecurve
C
.
(3)
Themap
Φ
isanisomorphismifandonlyif
X
equalsthenon-reducedcurve
C
n
with
trivialnilpotentstructureoforder
n
.
Similardescriptionsof
π
0
(Prym(
X/C
))weregivenin[N1]inthecaseofintegralspectral
curvesandby[CL]inthecaseofreduciblebutreducedspectralcurves.Also[dCHM]use
specialcasesforSL
2
.
Foracharacteristic
a
∈A
n
0
wedenoteby
π
:
X
a
→
C
theassociatedspectralcoverofdegree
n
(seesection2.2)andby
K
a
thesubgroupofPic
0
(
C
)definedin(2)andcorrespondingtothe
cover
X
a
.LetΓ
⊂
Pic
0
(
C
)[
n
]beacyclicsubgroupoforder
d
ofthefinitegroupPic
0
(
C
)[
n
]of
n
-torsionlinebundlesover
C
andlet
A
0Γ
⊂A
n
0
denotetheendoscopicsublocusofcharacteristics
na
suchthattheassociateddegree
n
spectralcover
π
:
X
a
→
C
comesfromadegree
d
spectral
coveroverthee´taleGaloiscoverof
C
withGaloisgroupΓ(fortheprecisedefinitionseesection
5.1).Withthisnotationwehavethefollowing
Theorem1.2.
Wehaveanequivalence
Γ
⊂
K
a
⇐⇒
a
∈A
0Γ
.
3
Thisgivesadescriptionofthelocusofcharacteristics
a
∈A
n
0
suchthatthePrymvariety
00Prym(
X
a
/C
)isnon-connected,becauseclearly
A
Γ
2
⊂A
Γ
1
ifΓ
1
⊂
Γ
2
.
Corollary1.3.
Thesublocusofcharacteristics
a
∈A
n
0
suchthatthePrymvariety
Prym(
X
a
/C
)
isnotconnectedequalstheunion
[0(3)
A
endo
:=
A
Γ
,
where
Γ
variesoverallcyclicsubgroupsofprimeorderof
Pic
0
(
C
)[
n
]
.
Calculatingthedimensionsoftheendoscopicloci
A
0Γ
willleadtoanimmediatetopological
application.RecallthatPic
0
(
C
)[
n
]actson
M
bytensorization,andthiswillinduceanaction
ontherationalcohomology
H
∗
(
M
;
Q
).Wethenhave
Theorem1.4.
Let
n>
1
and
p
n
bethesmallestprimedivisorof
n
.Assumethat
M
=
K
C
,the
canonicalbundleof
C
,andthat
(
n,
deg(Δ))=1
.Thentheactionof
Pic
0
(
C
)[
n
]
on
H
k
(
M
;
Q
)
istrivial,providedthat
k
≤
2
n
2
(1
−
1
/p
n
)(
g
−
1)
.
Infactthisresultshouldbesharp,asthetopologicalmirrorsymmetryconjecture[HT,
Conjecture5.1]predictsthatthesmallestdegreewherePic
0
(
C
)[
n
]actsnon-triviallyis
k
=
n
2
(1
−
1
/p
n
)(2
g
−
2)+1
.
ThisresultshintsatthecloseconnectionbetweenNgoˆ’sstrategyin[N1,N2]forstudyingthe
symmetriesoftheHitchinfibrationandthetopologicalmirrorsymmetryconjecturesin[HT].
Morediscussiononthisconnectioncanbefoundin[Hau2].
Finallylet
N
denotethemodulispaceofstablevectorbundlesofrank
n
andfixeddeterminant
Δover
C
.AgainthefinitegroupPic
0
(
C
)[
n
]actson
N
bytensorizationandthuson
H
∗
(
N
;
Q
).
Asthecohomology
H
∗
(
N
;
Q
)isasummandinthecohomologyof
H
∗
(
M
;
Q
)wecandeduce
Corollary1.5.
Thefinitegroup
Pic
0
(
C
)[
n
]
actstriviallyon
H
∗
(
N
;
Q
)
.
ThiswasthemainapplicationofHarder–Narasimhanin[HN,Theorem1].Ourproofhere
canbeconsideredasanexampleofboththeabelianizationphilosophyofAtiyah–Hitchin[At,
§
6.3]andNgoˆ’sstrategy[N1,N2]ofstudyingthesymmetriesoftheHitchinfibration.
Thepaperisorganizedasfollows.Insections2and3werecallbasicresultsonspectral
coversandonthenormmapNm
X/C
.Insections4and5weprovethetwomaintheorems.In
section6wedescribetheactionofthePrymvarietyPrym(
X
a
/C
)onthefiberover
a
∈A
n
0
oftheSL
n
-Hitchinfibration.Finallyinsection7weapplytheresultsinthispapertoprove
Theorem1.4anditsCorollary1.5.
Notation:
Givenasheaf
F
overascheme
X
andasubset
U
⊂
X
wedenoteby
F
(
U
)orby
Γ(
U,
F
)thespaceofsectionsof
F
over
U
.
Acknowledgements:
Duringthepreparationofthispaperthefirstauthorwassupportedbya
RoyalSocietyUniversityResearchFellowshipwhilethesecondauthorwassupportedbyaMarie
CurieIntra-EuropeanFellowship(PIEF-GA-2009-235098)fromtheEuropeanCommission.We
4TAMA´SHAUSELANDCHRISTIANPAULY
wouldliketothankJean-MarcDre´zet,NigelHitchin,M.S.NarasimhanandDanielSchaubfor
helpfuldiscussions.
2.
Preliminaries
2.1.
Twolemmasonabelianvarieties.
Givenanabelianvariety
A
andapositiveinteger
n
wedenoteby[
n
]:
A
→
A
themultiplicationby
n
,by
A
[
n
]=ker[
n
]itssubgroupof
n
-torsion
0pointsandby
A
ˆ=Pic(
A
)itsdualabelianvariety.Weconsider
f
:
A
−→
B
ahomomorphismbetweenabelianvarietieswithkernel
K
=ker(
f
)whichweassumetobe
finite.Welet
f
ˆ:
B
ˆ
→
A
ˆdenotethedualmapinducedby
f
.Weintroducethequotientabelian
variety
A
0
=
A/K
,sothatwecanwritethehomomorphism
f
asacompositemap
jµf
=
j
◦
µ
:
A
−→
A
0
−→
B,
where
µ
isanisogenywithkernel
K
and
j
isinjective.
Lemma2.1.
Thegroupofconnectedcomponentsoftheabeliansubvariety
ker(
f
ˆ)
⊂
B
ˆ
equals
π
0
(ker(
f
ˆ))=
K
b
,
where
K
b
=Hom(
K,
C
∗
)
isthegroupofcharactersof
K
.
Proof.
Weconsiderthedualmap
ˆµˆjf
ˆ:
B
ˆ
−→
A
ˆ
0
−→
A
ˆ
,
andobservethat
µ
ˆ:
A
ˆ
0
→
A
ˆisanisogenywithkernel
K
b
(seee.g.[BL]Proposition2.4.3)and
j
ˆhasconnectedfibers(seee.g.[BL]Proposition2.4.2).Thelemmathenfollows.
Wealsosupposethat
A
and
B
areprincipallypolarizedabelianvarieties,i.e.thepolarizations
induceisomorphisms
A
=
∼
A
ˆand
B
=
∼
B
ˆ.
Lemma2.2.
Weassumethatthereexistsahomomorphism
g
:
B
→
A
suchthat
g
◦
f
=[
n
]
forsomeinteger
n
.Thenthedualofthecanonicalinclusion
i
:
K,
→
A
[
n
]
isasurjectivemap
i
ˆ:
A
[
n
]=
A
ˆ[
n
]
−→
K
b
,
whichcoincideswiththerestrictionto
A
[
n
]
ofthecompositemap
j
ˆ
◦
g
ˆ:
A
→
B
→
A
ˆ
0
.
Proof.
Itsufficestoobservethattheisogeny
f
ˆ
◦
g
ˆ=[
n
c
]=[
n
]factorizesas
ˆ[
n
]:
A
−
j
◦
→
g
ˆ
A
ˆ
0
−
µ
ˆ
→
A,
that
K
b
=ker(
µ
ˆ),andthat
j
ˆ
◦
g
ˆissurjective.Henceacanonicalsurjection
A
[
n
]
→
K
b
,whichis
dualtotheinclusion
i
:
K,
→
A
[
n
],since[
n
c
]=[
n
].
52.2.
Spectralcovers.
Inthissectionwereviewsomeelementaryfactsonspectralcovers.
Let
C
beacomplexsmoothprojectivecurveandlet
M
bealinebundleover
C
withdeg
M>
0.Wedenoteby
|
M
|
thetotalspaceof
M
andby
π
:
|
M
|−→
C
theprojectiononto
C
.Thereisacanonicalcoordinate
t
∈
H
0
(
|
M
|
,π
∗
M
)onthetotalspace
|
M
|
.Thedirectimagedecomposesasfollows
∞Mπ
∗
O
|
M
|
=Sym
•
(
M
−
1
)=
M
−
i
.
0=iDefinition2.3.
Aspectralcover
X
ofdegree
n
overthecurve
C
andassociatedtotheline
bundle
M
isthezerodivisorin
|
M
|
ofanon-zerosection
s
∈
H
0
(
|
M
|
,π
∗
M
n
)
.
Sinceaspectralcover
X
isasubschemeof
|
M
|
,itisnaturallyequippedwithaprojection
onto
C
,whichwealsodenoteby
π
.Thedecompositionofthesection
s
accordingtothedirect
mus∞MH
0
(
|
M
|
,π
∗
M
n
)=
H
0
(
C,M
n
⊗
M
−
i
)(projectionformula)
0=i=
H
0
(
C,M
n
)
⊕∙∙∙⊕
H
0
(
C,M
)
⊕
H
0
(
C,
O
C
)
givesanexpression
s
=
s
0
+
ts
1
+
∙∙∙
+
t
n
−
1
s
n
−
1
+
t
n
s
n
with
s
j
∈
H
0
(
C,M
n
−
j
).Herewe
∼alsodenoteby
s
j
itspull-backto
|
M
|
.Wenotethatthereisanisomorphism
π
∗
:Pic(
C
)
−→
Pic(
|
M
|
),henceanylinebundleover
|
M
|
isoftheform
π
∗
L
forsomelinebundle
L
∈
Pic(
C
).
Moregenerally,wehaveadecomposition
H
0
(
|
M
|
,π
∗
L
)=
H
0
(
C,L
)
⊕
H
0
(
C,LM
−
1
)
⊕∙∙∙⊕
H
0
(
C,LM
−
d
)forsomeinteger
d
andanysection
s
∈
H
0
(
|
M
|
,π
∗
L
)canbewrittenintheform
(4)
s
=
s
0
+
ts
1
+
∙∙∙
+
t
d
−
1
s
d
−
1
+
t
d
s
d
,s
j
∈
H
0
(
C,LM
−
j
)
.
Lemma2.4.
Let
π
:
X
→
C
beaspectralcover.Thentheunderlyingreducedcurveofeach
irreduciblecomponentof
X
isagainaspectralcoverassociatedtothelinebundle
M
.
Proof.
Itsufficestoshowthatifthesection
s
∈
H
0
(
|
M
|
,π
∗
M
n
)decomposesas
s
=
s
(1)
∙
s
(2)
with
s
(
i
)
∈
H
0
(
|
M
|
,π
∗
L
i
)for
i
=1
,
2and
L
1
L
2
=
M
n
,then
L
i
=
M
n
i
and
n
1
+
n
2
=
n
.By(4)
thesection
s
(
i
)
canbewrittenas
(5)
s
(
i
)
=
s
(
i
)
+
ts
(
i
)
+
∙∙∙
+
t
n
i
s
(
i
)
,
n10iwith
s
j
(
i
)
∈
H
0
(
C,L
i
M
−
j
)and
s
(
ni
i
)
6
=0.Moreover
n
i
=deg(
X
(
i
)
/C
)with
X
(
i
)
=Zeros(
s
(
i
)
).By
consideringthehighestordertermsof(5)weobtaintherelations
n
1
+
n
2
=
n
and
s
(
n
1
1
)
∙
s
(
n
2
2
)
=
s
n
∈
H
0
(
C,
O
C
).Since
s
n
isanon-zeroconstantsection,weconcludethat
L
i
=
M
n
i
.
WeintroducetheSL
n
-andGL
n
-Hitchinspaceforthelinebundle
M
overthecurve
C
nnMMA
n
0
(
C,M
)=
H
0
(
C,M
j
)and
A
n
(
C,M
)=
H
0
(
C,M
j
)
.
j
=2
j
=1
Ifnoconfusionarises,wesimplydenotethesevectorspacesby
A
n
0
and
A
n
.Notethat
A
n
0
⊂A
n
.
Givenanelement
a
=(
a
1
,...,a
n
)
∈A
n
with
a
j
∈
H
0
(
C,M
j
),calledacharacteristic,we
associateto
a
aspectralcoverofdegree
n
π
a
:
X
a
−→
C,X
a
=Zeros(
s
a
)
⊂|
M
|
,
TAMA´SHAUSELANDCHRISTIANPAULY
6htiw(6)
s
a
=
t
n
+
a
1
t
n
−
1
+
∙∙∙
a
n
−
1
t
+
a
n
∈
H
0
(
|
M
|
,π
∗
M
n
)
.
Remark2.5.
Given
a
∈A
n
weobservethatthepull-backofthespectralcover
X
a
⊂|
M
|
by
theautomorphismof
|
M
|
givenbytranslationwiththesection
−
an
1
,i.e.(
x,y
)
7→
(
x,y
−
n
1
a
1
(
x
)),
equalsthespectralcover
X
a
0
forsome
a
0
∈A
n
0
;equivalentlydothechangeofvariables
t
7→
t
−
an
1
.
Hence
X
a
=
∼
X
a
0
.Itthereforesufficestorestrictourstudytospectralcovers
X
a
for
a
∈A
n
0
.
2.3.
Non-reducedcurves.
Let
X
beanirreduciblecurvecontainedinasmoothsurfaceand
let
X
red
denoteitsunderlyingreducedcurve.Thenthereexistsaglobalsection
s
ofaline
bundlesuchthat
X
red
=Zeros(
s
)andaninteger
k
suchthat
X
=Zeros(
s
k
).Weintroduce
thesubschemes
X
i
=Zeros(
s
i
)for
i
=1
,...,k
,sothatwehaveafiltrationof
X
byclosed
subschemes
X
red
=
X
1
⊂
X
2
⊂∙∙∙⊂
X
k
=
X.
Inthatcasewesaythat
X
hasanilpotentstructureoforder
k
.Foranyinteger
i
wedenoteby
O
X
i
thestructuresheafofthesubscheme
X
i
⊂
X
.Notethat
O
X
i
isnaturallya
O
X
-module.
Weneedtorecallaresultonthelocalstructureofcoherentsheavesonnon-reducedcurves.
Theorem2.6
([D2]The´ore`me3.4.1)
.
Let
X
beacurvewithnilpotentstructureoforder
k
and
let
E
beacoherentsheafover
X
.Thenthereexistsanopensubset
V
⊂
X
dependingon
E
and
integers
m
i
suchthat
∼
M
k
⊕
m
i
E
|
V
−→O
X
i
|
V
.
1=iThesheafontherightiscalledaquasi-freesheaf.
3.
Thenormmap
Inthissectionwerecallthedefinitionofthenormmapandprovesomeofitsproperties.The
standardreferencesare[G1]section6.5and[G2]section21.5.
3.1.
Definition.
Let
C
beasmoothprojectivecurveandlet
π
:
X
−→
C
beanyfinitedegree
n
coveringof
C
.The
O
C
-algebra
π
∗
O
C
willbedenoted
B
andthegroupof
invertibleelementsin
B
by
B
∗
.Notethat
B
isalocallyfreesheafofrank
n
.Let
U
⊂
C
bean
opensubsetandlet
s
∈
Γ(
U,
B
)=Γ(
π
−
1
(
U
)
,
O
X
)bealocalsection.Onedefines([G1]section
6.5.1)
N
X/C
(
s
):=det(
µ
s
)
∈
Γ(
U,
O
C
)
where
µ
s
:
B
|
U
→B
|
U
isthemultiplicationwiththesection
s
.Moreover
s
isinvertibleinΓ(
U,
B
)
ifandonlyif
N
X/C
(
s
)isinvertibleinΓ(
U,
O
X
).Wehavethefollowingobviousrelations
(7)
N
X/C
(
s
∙
s
0
)=
N
X/C
(
s
)
∙
N
X/C
(
s
0
)
,N
X/C
(
λs
)=
λ
n
N
X/C
(
s
)
foranylocalsections
s
and
s
0
of
B
andanylocalsection
λ
of
O
C
.
7Let
L
beaninvertible
B
-module.Wecanchooseacovering
{
U
λ
}
λ
∈
Λ
of
C
byopensubsets
∼andtrivializations
η
λ
:
L
|
U
λ
−→B
|
U
λ
.Then(
ω
λ,µ
)
λ,µ
∈
Λ
with
ω
λ,µ
=
η
λ
◦
η
µ
−|
1
U
λ
∩
U
µ
∈
Γ(
U
λ
∩
U
µ
,
B
)
∗∗isa1-cocyclewithvaluesin
B
and(
N
X/C
(
ω
λ,µ
))
λ,µ
∈
Λ
isa1-cocyclewithvaluesin
O
C
,the
sheafofinvertibleelementsof
O
C
.This1-cocycledeterminesaninvertiblesheafover
C
,which
wedenotebyNm
X/C
(
L
).Thefollowingpropertieseasilyfollowfrom(7)
(8)Nm
X/C
(
L⊗L
0
)=Nm
X/C
(
L
)
⊗
Nm
X/C
(
L
0
)
,
Nm
X/C
(
π
∗
M
)=
M
⊗
n
,
foranytwoinvertiblesheaves
L
and
L
0
over
X
andforanyinvertiblesheaf
M
over
C
.We
thereforeobtainagrouphomomorphismbetweenthePicardgroupsofthecurves
X
and
C
calledthenormmap
Nm
X/C
:Pic(
X
)
−→
Pic(
C
)
,
L7→
Nm
X/C
(
L
)
.
3.2.
Properties.
Inthecase
X
issmooth,thenormmapNm
X/C
hasamoreexplicitdescrip-
tionintermsofdivisorsassociatedtolinebundles.
Proposition3.1
([G2]section21.5)
.
Assumethat
X
isasmoothcurve.Thenormmap,as
definedabove,coincideswiththemap
XXL
=
O
X
(
n
i
p
i
)
7→
Nm
X/C
(
L
)=
O
C
(
n
i
π
(
p
i
))
,
i
∈
Ii
∈
I
where
n
i
∈
Z
and
p
i
∈
X
.Notethatthism
P
apiswell-defined,i.e.
Nm
X/C
(
L
)
onlydependson
thelinearequivalenceclassofthedivisor
i
∈
I
n
i
p
i
.
Fromnowonthecurve
X
isagainanarbitrarycoverof
C
.
Lemma3.2.
Let
0
→E→F→T→
0
beanexactsequenceof
O
X
-modules.Weassume
that
E
and
F
aretorsion-freeandthat
T
isatorsionsheaf.Let
ϕ
•
bealocalmorphismover
π
−
1
(
U
)
forsomeopensubset
U
⊂
C
betweenexactsequences
0
−→E−→F−→T−→
0
(9)
↓
ϕ
E
↓
ϕ
F
↓
ϕ
T
0
−→E−→F−→T−→
0
.
Weconsiderthe
O
C
-linearmapsinducedby
ϕ
E
and
ϕ
F
inthedirectimagesheaves
π
∗
E
and
π
∗
F
.Thenwehavetheequality
det(
ϕ
E
)=det(
ϕ
F
)
∈
Γ(
U,
O
U
)
.
Proof.
Itisenoughtoshowthatthetwolocalsectionsdet(
ϕ
E
)anddet(
ϕ
F
)coincideinthe
localrings
O
C,p
foreverypoint
p
∈
U
.Weput
A
=
O
C,p
and
K
=
Fr
(
A
)anddenoteby
E
,
F
and
T
thecorresponding
A
-modulesofsheaves
E
,
F
and
T
.Then
E
and
F
arefree
A
-modules,
hencewehaveinjections
E,
→
E
⊗
A
K
and
F,
→
F
⊗
A
K
.Since
T
isatorsionmodule,we
have
T
⊗
A
K
=0.Thenafterlocalizing(9)at
p
∈
C
andtakingtensorproductwith
K
,we
obtainthecommutativediagram
∼E
⊗
A
K
−−
=
−→
F
⊗
A
K
y
ϕ
E
⊗
id
y
ϕ
F
⊗
id
∼E
⊗
A
K
−−
=
−→
F
⊗
A
K,
8TAMA´SHAUSELANDCHRISTIANPAULY
wherethehorizontalmapsareisomorphisms.So
ϕ
E
⊗
id
and
ϕ
F
⊗
id
areconjugate,hence
det(
ϕ
E
⊗
id
)=det(
ϕ
F
⊗
id
)
∈
K
.Ontheotherhanddet(
ϕ
E
⊗
id
)anddet(
ϕ
F
⊗
id
)are
elementsin
A
⊂
K
,henceweobtainthedesiredequality.
Inthesequelwewillusethefollowingpropertiesofthenormmap:
Corollary3.3.
Let
E
and
F
betwotorsion-free
O
X
-modulessuchthat
0
−→E−→F−→T−→
0
,
where
T
isatorsion
O
X
-module.Let
s
∈
Γ(
U,
B
)=Γ(
π
−
1
(
U
)
,
O
X
)
bealocalsectionof
B
over
theopensubset
U
⊂
C
.Weconsiderthemapsinducedbythemultiplicationwiththesection
s
inthedirectimagesheaves
π
∗
E
and
π
∗
F
,whichwedenoteby
µ
s
E
∈
Hom
O
C
(
U
)
(
π
∗
E
(
U
)
,π
∗
E
(
U
))
Fand
µ
s
∈
Hom
O
C
(
U
)
(
π
∗
F
(
U
)
,π
∗
F
(
U
))
.Thenwehavetheequality
det(
µ
s
E
)=det(
µ
s
F
)
∈
Γ(
U,
O
C
)
.
Lemma3.4.
Let
p
:
X
e
→
X
beacoveringsuchthatthecokernelofthecanonicalinclusion
O
X
,
→
p
∗
O
X
e
isatorsion
O
X
-module.Then,foranyinvertiblesheaf
L
over
X
wehave
∗Nm
X
e
/C
(
p
L
)=Nm
X/C
(
L
)
.
Proof.
Weconsidertheexactsequence
(10)0
−→O
X
−→
p
∗
O
X
e
−→T−→
0
,
where
T
isatorsion
O
X
-module.Notethatthedirectimage
p
∗
O
X
e
istorsion-free.Wedenotethe
O
C
-alg
∼
ebra
π
∗
p
∗
O
X
e
by
B
e
.Notethat
B
e
isa
B
-module.Let
L
beaninvertible
O
X
-module,
η
λ
:
L
|
U
λ
−→B
|
U
λ
beasetoftrivializationsof
L
as
B
-module,and(
ω
λ,µ
)
λ,µ
∈
Λ
bethecorresponding
1-cocyclewithvaluesin
B
∗
.Thenthepull-back
p
∗
L
correspondstoa1-cocycle(
p
∗
ω
λ,µ
)
λ,µ
∈
Λ
withvaluesin
B
e
∗
obtainedfrom(
ω
λ,µ
)
λ,µ
∈
Λ
underthecanonicalinclusion
B
,
→B
e
.Wenow
applyCorollary3.3totheexactsequence(10)andconcludethat
N
X
e
/C
(
p
∗
ω
λ,µ
)=
N
X/C
(
ω
λ,µ
)
∈
Γ(
U
λ
∩
U
µ
,
O
C
).Thisprovesthelemma.
rSLemma3.5.
Let
X
=
i
=1
X
i
bethedecompositionof
X
intoirreduciblecomponents
X
i
.For
aninvertiblesheaf
L
,wedenoteby
L
i
=
L⊗
O
X
O
X
i
itsrestrictionto
X
i
.Then,wehavethe
equality
rONm
X/C
(
L
)=Nm
X
i
/C
(
L
i
)
.
1=irFProof.
Weapplythepreviouslemmatothecovering
p
:
X
e
=
i
=1
X
i
→
X
givenbythedisjoint
unionofthecurves
X
i
.
Lemma3.6.
Let
X
beanirreduciblecurveandlet
j
:
X
red
,
→
X
beitsunderlyingreduced
curve.Let
m
bethemultiplicityof
X
red
in
X
.Then,foranyinvertiblesheaf
L
over
X
wehave
Nm
X/C
(
L
)=Nm
X
red
/C
(
j
∗
L
)
⊗
m
.
Proof.
The
O
C
-algebra
B
=
π
∗
O
X
comesequippedwithanilpotentidealsheaf
J⊂B
such
that
B
red
=
B
/
J
=
π
∗
O
X
red
.Wechooseacovering
{
U
λ
}
λ
∈
Λ
of
C
byop
∼
ensubsetswhich
trivializetheinvertiblesheaf
L
,i.e.thereexistsisomorphisms
η
λ
:
L
|
U
λ
−→B
|
U
λ
andsuch
that
J
|
U
λ
isgeneratedbyanelement
t
∈B
|
U
λ
.Thenmultiplicationwiththeinvertibleelement
ω
λ,µ
=
η
λ
◦
η
µ
−|
1
U
λ
∩
U
µ
preservesthefiltration
t
m
−
1
B
|
U
λ
⊂∙∙∙⊂
t
B
|
U
λ
⊂B
|
U
λ
andactsonthe
9quotientsasmultiplicationwith
ω
λr,eµd
∈B
|
rUe
λ
d
∩
U
µ
.Itfollowsthat
N
X/C
(
ω
λ,µ
)=
N
X
red
/C
(
ω
λr,eµd
)
m
,
whichprovesthelemma.
3.3.
ThePrymvariety
Prym(
X/C
)
.
Givenaspectralcover
π
:
X
→
C
wedenotebyPic
0
(
X
)
theconnectedcomponentoftheidentityelementofthePicardgroupof
X
(seee.g.[Kl]).We
thendefinethePrymvarietyPrym(
X/C
)tobethekerneloftheNormmapNm
X/C
Prym(
X/C
):=kerNm
X/C
:Pic
0
(
X
)
−→
Pic
0
(
C
)
.
Werecallthat
n
denotesthedegreeofthecover
π
:
X
→
C
.Wechooseanamplelinebundle
O
C
(1)over
C
anddenoteby
O
X
(1)=
π
∗
O
C
(1)itspull-backto
X
andby
δ
=deg
O
C
(1).
Definition3.7.
Let
E
beacoherent
O
X
-module.Therankanddegreeof
E
withrespectto
thepolarization
O
X
(1)
aretherationalnumbers
rk(
E
)
and
deg(
E
)
determinedbytheHilbert
polynomial
χ
(
X,
E⊗O
X
(
l
))=
nδl
rk(
E
)+deg(
E
)+rk(
E
)
χ
(
O
X
)
.
Theslopeof
E
isdefinedby
µ
(
E
)=
drekg((
EE
))
.Thesheaf
E
isstable(resp.semi-stable)if
E
is
torsion-freeandforanypropersubsheaf
E
0
⊂E
wehavetheequality
µ
(
E
0
)
<µ
(
E
)
(resp.
≤
).
Remark3.8.
Thedefinitionsofrankanddegreeofacoherentsheaf
E
over
X
abovecoincide
withtheclassicaloneswhenthecurve
X
isintegral.The(semi-)stabilityconditionabove
coincideswiththe(semi-)stabilityconditionintroducedin[S1].
Remark3.9.
Usingtheequality
χ
(
X,
E⊗O
X
(
l
))=
χ
(
C,π
∗
E⊗O
C
(
l
))weobtainthefollowing
formulae
(11)
n
rk(
E
)=rk(
π
∗
E
)anddeg(
E
)+rk(
E
)
χ
(
O
X
)=deg(
π
∗
E
)+rk(
π
∗
E
)
χ
(
O
C
)
.
Proposition3.10.
Let
E
beatorsion-free
O
X
-moduleofintegralrank
r
=rk(
E
)
andlet
L
be
aninvertible
O
X
-module.Thenwehavetherelation
det(
π
∗
(
E⊗L
))=det(
π
∗
E
)
⊗
Nm
X/C
(
L
)
⊗
r
.
Proof.
Weshallusethenotationofsection3.1.Since
E
istorsion-free,thedirectimage
π
∗
E
is
alocallyfree
O
C
-module.Wechooseacovering
{
U
λ
}
λ
∈
Λ
of
C
forwhichboth
L
and
π
∗
E
are
trivialized,i.e.,suchthatthereexistslocalisomorphisms
α
λ
:
π
∗
E
|
U
λ
−
∼
→O
U
⊕
λ
rn
,τ
λ
:
L
|
U
λ
−
∼
→B
U
λ
.
Since
L
istrivialon
U
λ
wehaveanisomorphism
id
E
⊗
τ
λ
:
E⊗L
|
U
λ
−→E⊗B
|
U
λ
,
whichwecanconsiderasanisomorphismbetween
O
C
-modules
id
E
⊗
τ
λ
:
π
∗
(
E⊗L
)
|
U
λ
−→
π
∗
E
|
U
λ
.
Wecomposewith
α
λ
toobtainatrivializationof
π
∗
(
E⊗L
)
|
U
λ
β
λ
:
π
∗
(
E⊗L
)
|
U
λ
id
−
E
⊗
→
τ
λ
π
∗
E
|
U
λ
−
α
λ
→O
U
⊕
λ
rn
.
Given
λ,µ
∈
Λwecannowwritethetransitionfunctions
f
λ,µ
=
β
λ
◦
β
µ
−
1
ofthevectorbundle
π
∗
(
E⊗L
)as
1−f
λ,µ
:
O
U
⊕
rn
−
α
µ
→
(
π
∗
E
)
|
U
λ,µ
id
E
−
⊗
→
ω
λ,µ
(
π
∗
E
)
|
U
λ,µ
−
α
λ
→O
U
⊕
rn
,
λλ
10TAMA´SHAUSELANDCHRISTIANPAULY
wherewedenoteby
ω
λ,µ
=
τ
λ
◦
τ
µ
−
1
the
B
∗
-valuedtransitionfunctionsofthelinebundle
L
.We
deducefromthisexpressiontherelation
det(
f
λ,µ
)=det(
g
λ,µ
)
∙
det(id
E
⊗
ω
λ,µ
)
,
where
g
λ,µ
=
α
λ
◦
α
µ
−
1
denotesthetransitionfunctionsofthevectorbundle
π
∗
E
.Hencethe
propositionfollowsifweshowtherelationdet(id
E
⊗
ω
λ,µ
)=det(
ω
λ,µ
)
r
,whichisprovedinthe
nextLemma.
Lemma3.11.
Let
E
beatorsion-free
O
X
-moduleandlet
s
∈
Γ(
U,
B
)=Γ(
π
−
1
(
U
)
,
O
X
)
bea
localsectionof
B
overtheopensubset
U
⊂
C
.Wedenoteby
µ
s
E
∈
Hom
O
C
(
U
)
(
π
∗
E
(
U
)
,π
∗
E
(
U
))
themapinducedbymultiplicationwiththesection
s
.Thenwehaveanequality
det(
µ
s
E
)=det(
µ
s
)
r
∈
Γ(
U,
O
C
)
.
Proof.
ByLemma2.6thereexistsanopensubset
j
:
V,
→
X
suchthat
j
∗
E
isisomorphicto
m⊕j
∗
Q
where
Q
isaquasi-freesheafoftheform
⊕
ik
=1
O
X
ii
.WethenapplyCorollary3.3tothe
twoexactsequences
0
−→E−→
j
∗
j
∗
E−→T
1
−→
0
,
and0
−→Q−→
j
∗
j
∗
Q−→T
2
−→
0
,
where
T
i
aretorsionsheaves.Thisleadstotheequalitydet(
µ
s
E
)=det(
µ
s
Q
).Itthereforesuffices
tocomputedet(
µ
s
Q
)intermsofdet(
µ
s
).Weput
n
=
k
∙
l
with
l
=deg(
X
red
/C
).Thenwehave
1
X
k
1
X
k
1
X
k
r
=rk(
E
)=rk(
Q
)=
m
i
rk(
π
∗
O
X
i
)=
m
i
il
=
m
i
i.
n
i
=1
n
i
=1
k
i
=1
Let
A
=
O
C,p
denotethelocalringatthepoint
p
∈
C
andlet
B
denotethelocalizationof
π
∗
O
X
atthepoint
p
∈
C
.Thus
B
isaprojective
A
-moduleofrank
n
equippedwithafiltration
t
k
−
1
B
⊂∙∙∙⊂
tB
⊂
B,t
∈
B
with
t
k
=0
.
Weput
B
1
=
B/tB
,thelocalizationof
π
∗
O
X
red
atthepoint
p
∈
C
.Since
B
isprojectivewe
canchooseasplitting
B
=
B
1
⊕
tB
1
⊕∙∙∙⊕
t
k
−
1
B
1
.
Usingthisdecompositionwecanwriteasection
s
∈
B
as
s
=
s
0
+
ts
1
+
∙∙∙
+
t
k
−
1
s
k
−
1
with
s
j
∈
B
1
.Moreover,thelocalizationof
π
∗
O
X
i
atthepoint
p
∈
C
isgivenby
B
i
:=
B
1
⊕
tB
1
⊕∙∙∙⊕
t
i
−
1
B
1
andthematrixofthemultiplicationwith
s
in
B
i
iswithrespecttothis
decompositionlowerblock-triangularandhasdeterminantdet(
µ
sB
i
)=det(
µ
sB
01
)
i
.Therefore
kPYdet(
µ
s
Q
)=det(
µ
sB
i
)
m
i
=det(
µ
sB
1
)
ik
=1
im
i
.
01=iOntheotherhanddet(
µ
s
)=det(
µ
s
O
X
)=det(
µ
sB
k
)=det(
µ
sB
01
)
k
,whichleadstothedesired
equality.
Takingthetrivialsheaf
E
=
O
X
inProposition3.10weobtainthefollowingdescriptionof
thenormmap:
Corollary3.12.
Foranyinvertible
O
X
-module,wehave
Nm
X/C
(
L
)=det(
π
∗
L
)
⊗
det(
π
∗
O
X
)
−
1
.
Access to the YouScribe library is required to read this work in full.
Discover the services we offer to suit all your requirements!