Read anywhere, anytime
Description
Subjects
Informations
Published by | profil-urra-2012 |
Reads | 34 |
Language | English |
Exrait
REGULARITYOFOPTIMALTRANSPORTINCURVED
GEOMETRY:THENONFOCALCASE
G.LOEPERANDC.VILLANI
Abstract.
Weexploresomegeometricandanalyticconsequencesofacurvature
conditionintroducedbyMa,TrudingerandWanginrelationtothesmoothnessof
optimaltransportincurvedgeometry.Wediscussaconjectureaccordingtowhich
astrictversionoftheMa–Trudinger–Wangconditionissufficienttoproveregu-
larityofoptimaltransportonaRiemannianmanifold.Weprovethisconjecture
underasomewhatrestrictiveadditionalassumptionofnonfocality;atthesame
time,weestablishthestrikinggeometricpropertythatthetangentcutlocusis
theboundaryofaconvexset.Partialextensionsarepresentedtothecasewhen
thereisno“purefocalization”onthetangentcutlocus.
Contents
1.Introduction
2.VariousformsoftheMa–Trudinger–Wangcondition
3.MetricconsequencesoftheMa–Trudinger–Wangcondition
4.Uniformregularity
5.Convexityofinjectivitydomains
6.From
c
-convexityto
C
1
regularity
7.Stay-awayproperty
8.Ho¨ldercontinuityofoptimaltransport
9.Finalcommentsandopenproblems
AppendixA.Uniformconvexity
AppendixB.Semiconvexity
AppendixC.Differentialstructureofthetangentcutlocus
AppendixD.Acounterexample
References
1
29115191033363930424342535
2
G.LOEPERANDC.VILLANI
1.
Introduction
Thispaperhastwosides:ontheonehand,itisaworkonthesmoothnessof
optimaltransport;ontheotherhand,itisaworkonthestructureofthecutlocus.
Thelattercouldbediscussedindependentlyoftheformer,butsincetheinitial
motivationwasinoptimaltransporttheory,andsincebothfeaturesareintimately
entangled,weshallpresentbothproblematicstogether.Ourintroductionisreduced
totheminimumthatthereadershouldknowtounderstandthepaper;butmuch
moreinformationcanbefoundinthebooks[29,30];especially[30,Chapter12]is
alongandself-containedintroductiontotheregularityofoptimaltransport.
1.1.
Regularityofoptimaltransport:backgroundandmainresult.
After
Caffarelli[2,3,4]andUrbas[28]studiedthesmoothnessofoptimaltransportmaps
forthequadraticcostfunctionin
R
n
,theproblemnaturallyarosetoextendthese
resultstomoregeneralcostfunctions[29,Section4.3].Inthispaper,weshallonly
considertheimportantcasewhenthecostisthesquaredgeodesicdistanceona
Riemannianmanifold
M
;thiscostfunction,firststudiedbyMcCann[24],hasmany
applicationsinRiemanniangeometry[30,PartII].
Therewasalmostnoprogressonthesmoothnessissuebeforetheintroductionof
theMa–Trudinger–Wangtensor[22].Let
M
beaRiemannianmanifold,whichas
intherestofthispaperwillimplicitlybeassumedtobesmooth,connectedand
complete.Let
TM
=
∪
(
{
x
}×
T
x
M
)standforthetangentbundleover
M
,and
letcut(
M
)=
∪
(
{
x
}×
cut(
x
))denotethecutlocusof
M
.TheMa–Trudinger–
Wang(MTW)tensor
S
canbedefinedon
T
(
M
×
M
\
cut(
M
))asfollows[30,
Definition12.26].Let(
x,y
)
∈
M
×
M
\
cut(
M
),takecoordinatesystems(
x
i
)
1
≤
i
≤
n
,
(
y
j
)
1
≤
j
≤
n
around
x
and
y
respectively;set
c
(
x
′
,y
′
)=
d
(
x
′
,y
′
)
2
/
2,where
d
isthe
geodesicdistanceon
M
,andnotethat
c
is
C
∞
around(
x,y
).Write
c
i
(resp.
c
,j
)
forthepartialderivativewithrespectto
x
i
(resp.
y
j
),evaluatedat(
x,y
);
c
i,j
for
themixedsecondderivativewithrespectto
x
i
and
y
j
,etc.;andwrite(
c
i,j
)forthe
componentsoftheinverseof(
c
i,j
),alwaysevaluatedat(
x,y
).Thenforany
ξ
∈
T
x
M
,
η
∈
T
y
M
,
3X(1.1)
S
(
x,y
)
(
ξ,η
):=
c
ij,r
c
r,s
c
s,kℓ
−
c
ij,kℓ
ξ
i
ξ
j
η
k
η
ℓ
.
2
ijkℓrs
AccordingtoLoeper[20],KimandMcCann[16],thisformuladefinesacovariant
tensor.Moreover,asnotedin[20],if
ξ
and
η
areorthogonalunitvectorsin
T
x
M
,
then
S
(
x,x
)
(
ξ,η
)coincideswiththesectionalcurvatureat
x
alongtheplane
generatedby
ξ
and
η
[30,ParticularCase12.29].
REGULARITYOFOPTIMALTRANSPORT
3
Themainassumptionusedin[22,26,27]isthat
X(1.2)
S
(
x,y
)
≥
K
|
ξ
|
2
|
η
|
2
whenever
c
i,j
ξ
i
η
j
=0
,
jiwhere
K
isapositiveconstant(strongMTWcondition)or
K
=0(weakMTW
condition).Condition(1.2)impliesthatthesectionalcurvatureof
M
isbounded
belowby
K
.Loeper[21]showedthattheroundsphere
S
n
satisfies(1.2)forsome
K>
0(seealso[32]).
Thereisbynowplentyofevidencethattheseconditions,complicatedastheyseem,
arenaturalassumptionstodeveloptheregularitytheoryofoptimaltransport.In
particular,Loeper[20]showedhowtoconstructcounterexamplestotheregularityif
theweakMTWconditionisnotsatisfied.Thefollowingprecisestatementisproven
in[30,Theorem12.39];volstandsfortheRiemannianvolumemeasure.
Theorem1.1
(Necessaryconditionfortheregularityofoptimaltransport)
.
Let
M
beaRiemannianmanifoldsuchthat
S
(
x,y
)
(
ξ,η
)
<
0
forsome
x,y,ξ,η
.Thenthere
are
C
∞
positiveprobabilitydensities
f
and
g
on
M
suchthattheoptimaltransport
mapfrom
(
dx
)=
f
(
x
)vol(
dx
)
to
ν
(
dy
)=
g
(
y
)vol(
dy
)
,withcostfunction
c
=
d
2
,
isdiscontinuous.
(Forthesakeofpresentation,thistheoremisstatedin[30]underacompactness
assumption,buttheproofgoesthrougheasilytononcompactmanifolds.)
Conversely,smoothnessresultshavebeenobtainedundervarioussetsofassump-
tionsincludingeithertheweakorthestrongMTWcondition[10,16,19,20,22,27];
suchresultsarereviewedin[30,Chapter12].Forinstance,[22]furnishesinteriora
prioriregularityestimates(say
C
1
)ontheoptimaltransportmap,providedthatthe
optimaltransportplanissupportedinaset
D
⊂
M
×
M
suchthat(a)
c
isuniformly
smooth(say
C
4
)in
D
;(b)allsets(exp
x
)
−
1
(
D
x
)and(exp
y
)
−
1
(
D
y
)areconvex(in
T
x
M
and
T
y
M
respectively),where
D
x
=
{
y
;(
x,y
)
∈
D
}
,
D
y
=
{
x
;(
x,y
)
∈
D
}
,
andexpstandsfortheRiemannianexponential.(Themeaningofthenotation
(exp
x
)
−
1
willberecalledafterDefinition1.2.)Butsofar(a)and(b)havebeen
provenonlyinparticularcasessuchasthesphere
S
n
,oritsquotientslikethereal
projectivespace
RP
n
=
S
n
/
{±
Id
}
[16,20].ThereisalsoapartialresultbyDelanoe¨
andGe[6]workingonperturbationsofthesphereandassumingcertainrestrictions
onthesizeofthedata.
Inthispaperwesuggestthata(possiblyslightlymodified)strictformoftheMTW
condition
alone
isanaturalsufficientconditionforregularity.Weshallprovethis
conjectureonlyunderasimplifyingnonfocalityassumptionwhichwenowexplain.
Tobeginwith,letusintroducesomenotation:
4
G.LOEPERANDC.VILLANI
Definition1.2
(injectivitydomain,tangentcutandfocalloci)
.
Let
M
beaRie-
mannianmanifoldand
x
∈
M
.Forany
ξ
∈
T
x
M
,
|
ξ
|
=1,let
t
C
(
ξ
)bethefirsttime
′t
suchthat(exp
x
(
sξ
))
0
≤
s
≤
t
′
isnotminimizingfor
t>t
;andlet
t
F
(
ξ
)
≥
t
C
(
ξ
)be
thefirsttime
t
suchthat
d
tξ
exp
x
(thedifferentialofexp
x
at
tξ
)isnotone-to-one.
Wedefine
no
I(
x
)=
tξ
;0
≤
t<t
C
(
ξ
)=injectivitydomainat
x
;
onTCL(
x
)=
tξ
;
t
=
t
C
(
ξ
)=
∂
I(
x
)=tangentcutlocusat
x
;
onTFL(
x
)=
tξ
;
t
=
t
F
(
ξ
)=(first)tangentfocallocus
.
LetfurtherI(
x
)=I(
x
)
∪
TCL(
x
).
ThenwedefineI(
M
)=
∪
(
{
x
}×
I(
x
)),TCL(
M
)=
∪
(
{
x
}×
TCL(
x
)),TFL(
M
)=
∪
(
{
x
}×
TFL(
x
)),andequipthesesetswiththetopologyinducedby
TM
.
Thedenominationof(tangent)injectivitydomainisjustifiedbythefactthatexp
x
isone-to-oneI(
x
)
→
M
\
cut(
x
).Wedenoteitsinverseby(exp
x
)
−
1
:
M
\
cut(
x
)
→
I(
x
).Explicitly,(exp
x
)
−
1
(
y
)istheuniquevelocity
v
∈
T
x
M
suchthat(exp
x
tv
)
0
≤
t
≤
1
isminimizingandexp
x
v
=
y
.Byextension,if
y
∈
cut(
x
),wedenoteby(exp
x
)
−
1
(
y
)
thesetofallvelocities
v
satisfyingthelatterproperties.Basicpropertiesofthe
injectivitydomainandtangentcutlocusarereviewedinAppendixC.
Definition1.3
(nonfocality)
.
Wesaythatthecutlocusof
M
is
nonfocal
(orjust
that
M
isnonfocal)ifTCL(
M
)
∩
TFL(
M
)=
∅
;orequivalentlyif
t
F
(
ξ
)
>t
C
(
ξ
)for
all(
x,ξ
)intheunittangentbundleof
M
.
Inthispaper,weprovethefollowingregularityresult:
Theorem1.4
(Sufficientconditionfortheregularityofoptimaltransport)
.
Let
M
beaRiemannianmanifoldsatisfyingthestrongMTWcondition,andwhosecutlocus
isnonfocal.Thenforanytwo
C
∞
positiveprobabilitydensities
f
and
g
on
M
,the
optimaltransportmapfrom
(
dx
)=
f
(
x
)vol(
dx
)
to
ν
(
dy
)=
g
(
y
)vol(
dy
)
,withcost
function
c
=
d
2
,is
C
∞
.
Beforegoingon,letuspausetoremarkthespectacularcontrastbetweenTheorem
1.1andTheorem1.4:dependingonjustthetuningoftheMa–Trudinger–Wang
condition,a“generic”solutionoftheoptimaltransportproblemwithsmoothdata
maybeeither
C
∞
,ornotevencontinuous.
NowletuscommentontheassumptionsofTheorem1.4.Thenonfocalityassump-
tionmayseemridiculousatfirstsight,sinceitisneversatisfiedbycompactsimply
REGULARITYOFOPTIMALTRANSPORT
5
connectedmanifoldswithpositivecurvature,atleastinevendimension.(Thisresult
isduetoKlingenberg,withancestorsasoldasPoincare´;Weinstein[33,Section6]
collectsvarioussufficientconditionssothatthecutlocus
is
focal.)Thusouras-
sumptionsbasicallyneednontrivialtopology—somethingwhichisveryuncommon
inoptimaltransporttheory.Infact,thearchetypeofamanifoldsatisfyingthe
assumptionsofTheorem1.4istherealprojectivespace.
However,toadvocateforTheorem1.4,letuspointoutthat
(a)Asnotedin[6],itfollowsfromknownresultsinRiemanniangeometrythat
anycompactmanifoldwithnontrivialtopology,satisfyingastrongenough(positive)
curvaturepinchingassumption,hasnonfocalcutlocus.
(b)Theorem1.4isaparticularcaseofamoregeneralresult(Theorem1.8)which
coversallknown(non-flat)manifoldsforwhichthereisa
C
∞
regularitytheoryof
optimaltransport.
(c)Theorem1.4isalsothefirstresultofitskindtoallowfor
perturbations
:if
M
satisfiestheassumptionsofTheorem1.4,thenany
C
4
perturbationof
M
willalso
satisfythem(forinstance,any
C
4
perturbationof
RP
n
).
Remark1.5.
Therehasbeenintenseactivitytofindexamplesofmanifoldssatisfy-
ingMTWconditions.Newexamplescanbefoundin[17],butatthetimeofwriting
theyarestillnotmany.Already,showingthatthespheresatisfiestheseconditions
wasnotatrivialproblem[20,32].
Remark1.6.
Inconnectionwithcomment(c)above,letusrecordthefollowing
openproblem:
IsthestrongMTWconditionstableunderperturbationsoftheRie-
mannianmetric?
WhatmakesthisquestionnontrivialisthefactthattheMTW
conditionisnonlocalandshouldholdarbitrarilyclosetothecutlocus,eventhough
thedependenceofthedistanceupontheRiemannianmetricmaybecomeverywild
asoneapproachesthecutlocus.Atanonfocalcutpointthisproblemisnotserious
(whichexplainscomment(c)),butatafocalpointthisbecomesnontrivial.In[6]
theMa–Trudinger–Wangtensoriscontrollednearthespherebytwoderivativesof
thesectionalcurvatures,ratherthanfourderivativesofthemetric;butthefocality
problemisleftunsolved.Usingacleverstrategy,FigalliandRifford[10]managed
toanswerourquestionpositivelywhen
M
=
S
2
.
1.2.
Cutlocus:mainresult.
TheproofofTheorem1.4isbasedonastriking
geometricpropertywhichhasinterestonitsown,andseemstobethefirstofits
:dnik
6
G.LOEPERANDC.VILLANI
Theorem1.7.
Let
M
beaRiemannianmanifoldwithnonfocalcutlocus,satisfy-
ingthestrongMa–Trudinger–Wangcondition.Thenthereis
κ>
0
suchthatall
injectivitydomains
I(
x
)
of
M
are
κ
-uniformlyconvex.
Toputthisresultinperspectivewithmorefamiliarresults,recallthatthestrong
MTWconditionisareinforcementoftheconditionofuniformlypositivesectional
curvature,whichimpliesanupperboundonthediameterofinjectivitydomains(this
isjustanawkwardwaytoreformulatetheBonnet–Myerstheorem).Tosummarize,
ifSectstandsforsectionalcurvature,
strongMTW=
⇒
Sect
≥
κ>
0
⇓⇓uniformconvexityofI(
x
)=
⇒
boundondiameter
ApartfromthislinkwiththeBonnet–Myerstheorem,Theorem1.7issubstantially
differentfromallpreviouslyknownresultsorconjecturesinthefield:itdoesnot
bearonthesizeordimensionortopologicalstructureofthecutlocus,butonits
globalgeometricshape.Italsodisplaysa“positiveeffect”ofpositivecurvature;this
wassomewhatunexpected,sinceitisusuallynegativecurvaturewhichhasagood
impactonthestructureofthecutlocus(bypreventingfocalization).
ThistheoremwillbeproveninSection5.Thekeystepinourproofisakind
of“continuitymethod”setintheinjectivitydomains,wherethenormplaysthe
roleof“orderingparameter”,andthe
strict
convexityallowstokeeponincreasing
theparameter.AmoregeneralvariantofTheorem1.7,allowingforsomesort
offocalization(underassumptionswhichinparticularincludethesphere),willbe
proveninTheorem1.8.
1.3.
OutlineofproofofTheorem1.4.
Wenowexplaintheplanoftheproofof
Theorem1.4,andtheroleofTheorem1.7therein.Theproofisdividedintofive
steps,ofvariabledifficulty.
1.AccordingtoMcCann[24],theoptimaltransportmapbetween
f
(
x
)vol(
dx
)
and
g
(
y
)vol(
dy
)takestheform
(1.3)
T
(
x
)=exp
x
(
∇
ψ
(
x
))
,
whereeachgeodesic(exp
x
(
t
∇
ψ
(
x
)))
0
≤
t
≤
1
isminimizing,
∇
standsforgradient,and
thesemiconvexfunction
ψ
solvesaweakformoftheMonge–Ampe`retypeequation
)4.1(
22
2
f
(
x
)
g
(exp
∇
ψ
(
x
))
det
∇
ψ
(
x
)+
∇
xx
cx,
exp
∇
ψ
(
x
)=
det
∇
xy
cx,
exp
∇
ψ
(
x
)
.
REGULARITYOFOPTIMALTRANSPORT
7
(Hereexp
∇
ψ
(
x
)isashorthandforexp
x
∇
ψ
(
x
),
∇
2
standsforHessian,
∇
x
2
forthe
Hessianwithrespecttothe
x
variable,etc.)
2.ThestrongMTWconditionimpliescertaininequalitiesbetweendistances(The-
orem3.1),andtheuniformconvexityofallinjectivitydomains(Theorem1.7).The
combinationofbothimpliesapropertyof
M
whichwecall
uniformregularity
(The-
orem4.4);itisanintrinsicandglobalreformulationofsimilarconditionsintroduced
earlierintheregularitytheoryofoptimaltransport.
3.Fromtheuniformregularityfollowsthecontinuityofoptimaltransport,and
infactthe
C
1
regularityof
ψ
(Theorem6.1).Thisstepisbasedonthestrategyof
Loeper[20],simplifiedbyKimandMcCann[16,Appendices],furthersimplifiedand
extendedinthepresentwork.
4.The
C
1
regularityof
ψ
(andtheassumptionon
M
)impliesthattheoptimal
transportstaysawayfromthecutlocus(Theorem7.1),soittakesplaceinadomain
where
c
is
C
∞
,withuniformbounds.
5.Steps2and4makeitpossibletoapplythelocalaprioriestimatesofMa,
TrudingerandWang[22]in
C
k,β
(Ho¨lder)spaces,where
β
∈
(0
,
1),and
k
∈
N
isarbitrarilylarge.(Theseaprioriestimatesareestablishedforasmoothcost
functiondefinedinadomainof
R
n
×
R
n
;butbytheintrinsicnatureof
S
[16],[30,
Remark12.30]theyalsoapplytoacurvedgeometry.)Thenonemayconclude,using
argumentssimilartothosein[22],that
ψ
is
C
∞
if
f
and
g
are.Thisconcludesthe
proof.
Inthesequel,weshallonlytreatSteps2to4oftheaboveoutlineofproof,since
thesearetheonlynovelsteps.This,togetherwiththeproofofTheorem1.7,will
occupySections3to7.
TheninSection8,weshallestablishthe
C
1
,α
regularityof
ψ
withoutanysmooth-
nessassumptionontheprobabilitydensities,inthestyleof[20].
WeshallalsoestablishamoregeneralversionofTheorems1.4and1.7,whichhas
themerittocoveratthesametimethecaseofthesphere
S
n
.Letusdefine
1−(1.5)
δ
(
M
)=
(
x,v
)
∈
i
T
n
C
f
L(
M
)
diam(exp
x
)(exp
x
v
)
.
Theorem1.8.
Let
M
beaRiemannianmanifoldsatisfyingcondition
MTW(
K
0
,C
0
)
ofSection2,forsome
K
0
,C
0
>
0
,suchthat
δ
(
M
)
definedin
(1.5)
ispositive,and
suchthatforany
x
∈
M
,
TFL(
x
)
hasnonnegativesecondfundamentalformnear
TCL(
x
)
∩
TFL(
x
)
.Then
8
G.LOEPERANDC.VILLANI
(a)thereis
κ>
0
suchthatallinjectivitydomainsof
M
are
κ
-uniformlyconvex;
(b)foranytwo
C
∞
positiveprobabilitydensities
f
and
g
on
M
,theoptimal
transportmapfrom
(
dx
)=
f
(
x
)vol(
dx
)
to
ν
(
dy
)=
g
(
y
)vol(
dy
)
,withcostfunction
c
=
d
2
,is
C
∞
.
HerearesomecommentsonTheorem1.8:
•
InthenotationofPropositionC.1,theassumption
δ
(
M
)
>
0standsbetween
J
=
∅
(nofocalcutvelocity)and
J
\
Σ=
∅
(nopurelyfocalcutvelocity).
•
PropositionC.5(a)andLemma2.3showthatTheorem1.8generalizesTheo-
rems1.4and1.7;inawaythisresultseemstobethebestthatonecanhopefor
withthetechniquesofthispaper.However,theassumptionsofTheorem1.8,unlike
thoseofTheorems1.4and1.7,arenotstableunderperturbation;thisisthereason
whywechosenottopresentitasourmainresult.
•
ThenonnegativityofthesecondfundamentalformofTFL(
x
)istobeunderstood
inweaksense(seetheremindersinAppendixA).Theextraassumptionputonthe
focalcutlocusisnotsobadasonemaythink,becausethefocallocusisamuchless
mysteriousobjectthanthecutlocus.
TheproofofTheorem1.8followsthesamegenerallinesastheproofsofTheorems
1.4and1.7,butdetailsaremuchmoretricky.Weshallsketchtheargumentsatthe
endofSections4,5and7.
TherearefourAppendices.Thefirsttwoaredevotedtovariousnotionsrelated
toconvexity.Inthethirdone,wegathersometechnicalresultsaboutthestructure
ofthetangentcutlocus.(Hopefullyourproblemswillconstituteamotivationto
pushthestudyofthistopic.)Inthefourthoneweconstructacounterexample
showingthatpositivesectionalcurvaturealonedoesnotguaranteetheconvexityof
injectivitydomains.
Acknowledgement:
Thisworkwasstartedduringastayofthesecondauthorin
Canberra(Summer2007),fundedbyaFASTresearchgrantcoordinatedbyPhilippe
Delanoe¨andNeilTrudinger.Thiswasagoldenopportunityforhimtolearnthe
subjectofregularityofoptimaltransportfromNeilTrudingerandXu-JiaWang.
WearegratefultoRobertMcCannandYoung-HeonKimforexchangingpreprints
andideas;specialthanksareduetoYoung-Heonforspottingaholeinaprelimi-
naryversionofthispaper.WewarmlythankLudovicRiffordandAlessioFigalli
foracarefulreadingandpreciouscommentsandcontributionsaboutthefocalcase;
wegladlynotethatourdiscussionsledtothegenesisof[10].Furtherenlightening
Access to the YouScribe library is required to read this work in full.
Discover the services we offer to suit all your requirements!