IRF520N HEXFET® Power MOSFET

-

English
8 Pages
Read an excerpt
Gain access to the library to view online
Learn more

Description

Niveau: Secondaire, Lycée, Terminale
IRF520N HEXFET® Power MOSFET PD - 91339A Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. S D G Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 9.7 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 6.8 A IDM Pulsed Drain Current ? 38 PD @TC = 25°C Power Dissipation 48 W Linear Derating Factor 0.32 W/°C VGS Gate-to-Source Voltage ± 20 V EAS Single Pulse Avalanche Energy? 91 mJ IAR Avalanche Current? 5.7 A EAR Repetitive Avalanche Energy? 4.8 mJ dv/dt Peak Diode Recovery dv/dt ? 5.0 V/ns TJ Operating Junction and -55 to + 175 TSTG Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case ) °C Mounting torque, 6-32 or M3 srew 10 lbf•in (1.1N•m) Absolute Maximum Ratings Parameter Typ.

  • units conditions

  • tj ≤

  • source current

  • body diode

  • drain current

  • thermal response

  • avalanche energy?

  • typical output


Subjects

Informations

Published by
Reads 25
Language English
Report a problem

lllllAdvanced Process Technology
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Fully Avalanche Rated
Description
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power
MOSFETs are well known for, provides the designer
with an extremely efficient and reliable device for use
in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220
contribute to its wide acceptance throughout the
industry.
Absolute Maximum Ratings
Parameter
I
D
@ T
C
= 25°CContinuous Drain Current, V
GS
@ 10V
I
D
@ T
C
= 100°CContinuous Drain Current, V
GS
@ 10V
I
DM
Pulsed Drain Current
Q
P
D
@T
C
= 25°CPower Dissipation
Linear Derating Factor
V
GS
Gate-to-Source Voltage
E
AS
Single Pulse Avalanche Energy
I
AR
Avalanche Current
Q
E
AR
Repetitive Avalanche Energy
Q
dv/dtPeak Diode Recovery dv/dt
S
T
J
Operating Junction and
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 srew
Thermal Resistance
Parameter
R
q
JC
Junction-to-Case
R
q
CS
Case-to-Sink, Flat, Greased Surface
R
q
JA
Junction-to-Ambient

RG

PD - 91339A
IRF520N
HEXFET
®
Power MOSFET
DV
DSS
= 100V
R
DS(on)
= 0.20
W
S
I
D
= 9.7A

TO-220AB

.xaM7.98.6838423.002 ± 197.58.40.5-55 to + 175
300 (1.6mm from case )
10 lbfin (1.1Nm)
Typ.Max.
3.1
0.50
26

stinUAWC°/WVJmAJmsn/VC°stinU°W/C

5/13/98

IRF520N

Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
ParameterMin.Typ.Max.Units

Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage100V
GS
V = 0V, I
D
= 250µA
D
V
(BR)DSS
/
D
T
J
Breakdown Voltage Temp. Coefficient0.11V/°CReference to 25°C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance0.20
W
V
GS
= 10V, I
D
= 5.7A
T
V
GS(th)
Gate Threshold Voltage2.04.0V
D
V
S
= V
GS
, I
D
= 250µA
g
fs
Forward Transconductance2.7S
DS
V = 50V, I
D
= 5.7A
25V
DS
= 100V, V
GS
= 0V
I
DSS
Drain-to-Source Leakage Current250µA
DS
V = 80V, V
GS
= 0V, T
J
= 150°C
I
GSS
Gate-to-Source Forward Leakage100nA
GS
V = 20V
Gate-to-Source Reverse Leakage-100V
GS
= -20V
Q
g
Total Gate Charge25
D
I= 5.7A
Q
gs
Gate-to-Source Charge4.8nC
DS
V = 80V
Q
gd
Gate-to-Drain ("Miller") Charge11
GS
V = 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time4.5
DD
V = 50V
t
r
Rise Time23
D
I= 5.7A
t
d(off)
Turn-Off Delay Time32ns
G
R= 22
W
t
f
Fall Time23
D
R= 8.6
W∃
See Fig. 10
T
DL
D
Internal Drain Inductance4.56Bmetmw e(e0.n2 l5eian.d),
nHfrom package
G
L
S
Internal Source Inductance7.5and center of die contact
S
C
iss
Input Capacitance330
GS
V = 0V
C
oss
Output Capacitance92pF
DS
V = 25V
C
rss
Reverse Transfer Capacitance54 = 1.0MHz, See Fig. 5

TSource-Drain Ratings and Characteristics
ParameterMin.Typ.Max.Units

Conditions
I
S
Continuous Source Current9.7MOSFET symbol
D
(Body Diode)Ashowing the
I
SM
Pulsed Source Current38integral reverse
G
(Body Diode)
Q
p-n junction diode.
S
V
SD
Diode Forward Voltage1.3V
J
T= 25°C, I
S
= 5.7A, V
GS
= 0V
t
rr
Reverse Recovery Time99150ns
J
T = 25°C, I
F
= 5.7A
Q
rr
Reverse RecoveryCharge390580nCdi/dt = 100A/µ

s
T

Notes:
Q
Repetitive rating; pulse width limited by
S
I
SD
£
5.7A, di/dt
£
240A/µs, V
DD
£
V
(BR)DSS
,
max. junction temperature. ( See fig. 11 ) T
J
£
175°C
R
V
DD
= 25V, starting T
J
= 25°C, L = 4.7mH
T
Pulse width
£
300µs; duty cycle
£
2%.
R
G
= 25
W
, I
AS
= 5.7A. (See Figure 12)

T
001 VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V

10

V5.4 20µs PULSE WIDTH
1
T
C
= 25°C
A
0.1110100
V D S , Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics

010

T
J
= 25°C
10
T
J
= 175°C

2V0
D
µ
S
s= P 5U0LVSE WIDTH
145678910
A
V
G

S
, Gate-to-Source Voltage (V)
Fig 3.
Typical Transfer Characteristics

001 VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V

01

IRF520N

V5.4 20µs PULSE WIDTH
1
T
C
= 175°C
A
0.1110100
V D S , Drain-to-Source Voltage (V)
Fig 2.
Typical Output Characteristics

3.0
I
D
= 9.5A
5.20.25.10.15.00.0
V
G

S
= 10V
-60-40-20020406080100120140160180
A
T
J
, Junction Temperature (°C)
Fig 4.
Normalized On-Resistance
Vs. Temperature

IRF520N

006V = 0V, f = 1MHz
SGC =C +C ,C SHORTED
iss




gs




gd



ds
C = C
rss


gd
005C =C + C
oss



ds

gd
Cssi004003 Csso002 Cssr0010A110100
V , Drain-to-Source Voltage (V)
SDFig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage

001

T
J
= 175°C
01

T
J
= 25°C

V
G

S
= 0V
10.40.60.81.01.21.4
A
V
S

D
, Source-to-Drain Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage

V = 80V
SD V = 50V
SD V = 20V
SD

20
I
D
= 5.7A
612184 F OSRE ET EFISGTU CRIER C13UIT
0A0510152025
Q
G
, Total Gate Charge (nC)
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage

011

001 OPERATION IN THIS AREA LIMITED
BY R
DS(on)
sµ01sµ001sm1sm01 T = 25°C
T
JC
= 175°C
0.1
Single Pulse
1101001000
A
V
D

S
, Drain-to-Source Voltage (V)
Fig 8.
Maximum Safe Operating Area

0.010.80.60.40.2

0.0255075100125150175
T
C
, Case Temperature( ° C)
Fig 9.
Maximum Drain Current Vs.
Case Temperature

1 0

D = 0.50
10.20
01.050.00.02SINGLE PULSE
0.10.01(THERMAL RESPONSE)

IRF520N
RDVSDVGS
D.U.T.
RG+VDD-V01PDuultsye FWacitdotrh
££ 01& 1
µ
%
s
Fig 10a.
Switching Time Test Circuit
VSD%09

%01VSGt
d(on)
t
r
t
d(off)
t
f
Fig 10b.
Switching Time Waveforms

PMDt1t2Notes:
1. Duty factor D =t
1
/ t
2
0.012. Peak T
J
=P
DM
x Z
thJC
+ T
C
0.000010.00010.0010.010.1
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRF520N

LVSDD.U.T.
R+GVDD-10 V
I
AS
t
p
0.01
W
Fig 12a.
Unclamped Inductive Test Circuit
V
(BR)DSS
tpVDD

VSD

ISAFig 12b.
Unclamped Inductive Waveforms

QGV 01Q
GS
Q
GD
VGCharge
Fig 13a.
Basic Gate Charge Waveform

I
DTOP 2.3A
4.0A
BOTTOM 5.7A

00206102108040
V
D

D
= 25V
A
255075100125150175
Starting T
J
, Junction Temperature (°C)

Fig 12c.
Maximum Avalanche Energy
Vs. Drain Current
CurrentRegulator
SameTypeasD.U.T.
WK0512V.2
m
F.3
m
F
+D.U.T.-V
DS
VSGAm3IIGDCurrentSamplingResistors
Fig 13b.
Gate Charge Test Circuit

Q+

R-

DT.U.

RG

IRF520N

Peak Diode Recovery dv/dt Test Circuit
+
Circuit Layout Considerations
·
Low Stray Inductance

·
Ground Plane

·
Low Leakage Inductance
Current Transformer

S-

T-+

·
dv/dt controlled by R
G
+
··
IDri vceor nstraomllee dt ybpye Daust yD .FUa.cTt.or "D"
-
V
DD
DS·
D.U.T. - Device Under Test

Driver Gate DriveP.W.
P.W.PeriodD = Period

D.U.T. I
SD
Waveform
Reverse
RecoveryBody Diode Forward
CurrentCurrentdi/dt
D.U.T. V
DS
WaveformDiode Recovery
d/vdtRe-Applied
VoltageBody Diode Forward Drop
Inductor Curent
Ripple
£
5%
*
V
GS
= 5V for Logic Level Devices
Fig 14.
For N-Channel HEXFETS

V
GS
=10V
*

VDDIDS

IRF520N
Package Outline
TO-220AB Outline
Dimensions are shown in millimeters (inches)
10.54 (.415)
2.87 (.113)10.29 (.405)33..5748 ((..113499))4.69 (.185)- B -
2.62 (.103)- A -4.20 (.165)1.32 (.052)
1.22 (.048)
66..1407 ((..224505))
41145..8244 ((..568040))
1.15 (.045)LEAD ASSIGNMENTS
MIN
1 2 3 12 -- GDARTAIEN
3 - SOURCE
4 - DRAIN
1134..4079 ((..555350))4.06 (.160)
3.55 (.140)
3X0.93 (.037)3X0.55 (.022)
1.40 (.055)0.69 (.027)0.46 (.018)
3X1.15 (.045)0.36 (.014) M B A M2.92 (.115)
2.54 (.100)2.64 (.104)
X2NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220-AB.
2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
Part Marking Information
TO-220AB
EXAMPLE : THIS IS AN IRF1010
WITH ASSEMBLY
A
LOT CODE 9B1MINTERNATIONALPART NUMBER
RECTIFIERIRF1010
LOGO9246
9B 1MDATE CODE
ASSEMBLY(YYWW)
LOT CODEYY = YEAR
WW = WEEK

WORLD HEADQUARTERS:
233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EIURR OCPAENAAND AH:

E
7
A
3
D
21
Q

U
Vi
A
ct
R
o
T
ri
E
a
R
P
S
a
:
r kH Aurvset. , GSreuietne, 2O0x1t,e dM, arSkuhrraemy, ROHn8t a9riBo BL, 3URK 2 TZe8l,: T+e+l : 4(49 0158)8 34 7753 21082907
IR GERMIAR NITY:A

L
S
Y
a
:
a lVbiuar gLsitgruarsias e4 91,5 17,0 067113 5B0o rBgaadr oH, oTmorbiunrog TTeel:l : ++++ 3499 1611 4752 19 06151910
IR FAIRR ESAOSUT:T

H
K
E
&
A
H
S
B
T
l

d
A
g.
S
,
I
2
A:
F ,3 3105- 4O uNtirsahim- IkReobaudk, u#r1o 03--0C2 hToamn e,B oToons hLiimata -BKuuil,d iTnogk, ySoi nJgaappaonr e1 7013 1T6e l:T e8l1: 63 53 292813 80307816
http://www.irf.com/Data and specifications subject to change without notice.5/98