Read anywhere, anytime
Description
Subjects
Informations
Published by | profil-zyan-2012 |
Reads | 33 |
Language | English |
Exrait
1−d 1−d
1−d
,
1-d
applications.
net
on,
w
e
orks
equation
with
for
a
,
dela
on
y
of
term
this
in
to
the
1]
no
wn
dal
℄
,
ks
atten
Serge
W
transmission
Julie
T
V
orks
alein
ab
Univ
13
ersit?
[20
de
engineering,
V
is
et
,
du
Hainaut
of
Cam
,
br?sis
orks
LAMA
y
V,
the
FR
v
CNRS
in
2956
w
Institut
v
des
wledge,
Sciences
w
et
et
T
some
ec
er.
hniques
11
of
24
V
for
28
F-59313
biological,
-
V
urthermore
ell
Cedex
they
9
instabilities
F
,
rance
,
Julie.V
on
impro
p
Octob
system
er
24,
trol
2006
net
pa
In
of
this
see
pap
℄
er
w
here
e
the
dela
the
oundary
w
of
a
v
v
equation
e
w
equation
our
on
analysis
1-d
to
net
net
w
not
orks
Before
with
us
a
and
dela
of
y
e
term
,
in
12
the
14
b
26
oundary
details.
and/or
transmission
,
,
W
for
e
electrical
rst
or
sho
w
F
the
it
w
w
ell
kno
p
that
osedness
of
some
the
[17
problem
18
and
19
the
30
25
y
or
of
the
an
trary
appropriate
v
energy
the
.
W
the
e
[28
giv
1].
e
tly
a
problems
and
1-d
sucien
w
t
are
ying
that
tion
guaran
man
tees
authors,
the
[22
16
y
and
to
references
zero
there.
of
e
the
in
energy
estigate
.
eect
W
time
e
y
further
b
giv
and/or
e
stabilization
sucien
the
t
a
e
that
in
lead
e
to
net
exp
orks.
onen
o
tial
kno
or
the
p
of
olynomial
eect
stabilit
a
y
the
of
w
the
is
solution.
y
Some
done.
examples
going
are
let
also
on
denitions
net
notations
orks
out
in
Stabilization
whole
giv
w
en.
used
1
the
In
pap
tro
W
refer
Time
[2
dela
3,
y
,
eects
,
arise
,
in
,
man
,
y
℄
more
problems,
1
seen1−d R R n≥ 1
N[
R = ej
j=1
e (0, l ), l > 0,j j j
k =j, e ∩ej k
e ej j
u : R−→R, u =u uj |ej
ej
E ={e ; 1≤j ≤N} R Vj
R. v,
E = {j∈{1,...,N};v∈e }v j
v (E ) = 1, vv
(E ) ≥ 2, v Vv ext
V v∈V Eint ext v
j .v
Vext
cV =D∪N ∪V .ext ext
D
N
c cV V Vintext int
Vc
c cV =V ∪V .c int ext
1D =∅ H
2 2∂ u ∂ uj j (x, t)− (x, t) = 0 0<x<l , t> 0, 2 2 j∂t ∂x ∀j∈{1,...,N}, u (v, t) =u (v, t) =u(v,t) ∀j, l∈E , v∈V ,t> 0, j l v int X ∂u (v) (v)j ∂u ∂u (v, t) =−(α (v, t)+α (v, t−τ )) ∀v∈V ,t> 0,v c 1 2∂nj ∂t ∂t j∈EvX
∂uj c(v, t) = 0 ∀v∈V \V ,t> 0,int int∂nj j∈Ev u (v,t) = 0 ∀v∈D,t> 0, jv ∂u jv (v,t) = 0 ∀v∈N,t> 0, ∂nj v ∂u (0) (1) u(t = 0) =u , (t = 0) =u , ∂t ∂u 0(v, t−τ ) =f (t−τ ) ∀v∈V , 0<t<τ ,v v c vv∂t
form
of
w
e
no
de,
e
b
W
me
norm.
a
a
no
ecomes
v
b
F
semi-norm
b
the
or
that
a
so
that
;
dene6
set
that
is
ose
is
supp
edges
also
v
e
of
W
of
namely
.
des,
e
no
e
trolled
no
of
either
set
the
the
wher
y
set
b
oundary
denote
W
e
in
w
if
2
exterior
v
If
F
ving
osed.
set
imp
let
e
a
b
will
the
of
transmission
the
k
e
the
a
the
where
function
,
).
of
the
subset
(her
a
or
x
le
further
extr
e
or
W6
.
and
of
that
des
is
no
initial/b
the
of
at
1.1
oundary
the
b
e
k
de.
terior
a
an
nally
and
while
of
no
des
an
no
the
ertex.
at
as
ha
oundary
of
b
the
Neumann
b
;
ertex
of
xed
des
or
no
of
the
v
at
set
y
oundary
and
b
edges
hlet
set
y
ose
denote
imp
W
will
edge
e
to
w
Clearly
set
:
w
of
a
partition
F
a
of
x
w
ans
no
e
e
de
W
a
y
vertex
b
d
denoted
al
is
emity
of
ommon
t
a
elemen
empty
single
is
the
for
,
our
interval
ulate
identify
or
with
F
we
des.
no
problem:
terior
e
in
by
of
d
set
,
the
(1)
and
d
alue
onne
a
network
des
is
no
A
exterior
Denition
of
set
or
shortness,(v) (v)
α ,α ≥ 0 τ > 0v1 2
∂uj(v,·)
∂nj
u vj
u ej j
∂u 0(v, t−τ ) =f (t−τ ) v∈V , 0<t<τv v c vv∂t
(v)
α = 0 v ∈ Vc2
(v)
α = 01
(v) (v)
α α1 2
(v) (v)
α ≤α ,∀v∈V ,c2 1
(v) (v)
α <α ,∀v∈V ,c2 1
at
y
due
W
to
for
the
dela
d
y
use
equation.
In
appropriate
the
do
absence
it
is
of
Here
dela
b
y
rates
,
t
i.
initial
e.,
e
normal
a
ard
If
w
the
out
problem
the
that
means
and
abilit
for
to
all
of
xed
5
e
giv
b
y
to
w
,
y
the
that
ab
deriv
o
.
v
e
e
problem
t
has
of
b
v
een
w
not
b
in
y
generalit
some
authors
t
in
the
some
energy
particular
the
situations,
the
for
v
abilit
Ammari
metho
and
lik
T
form
ucsnak
a
℄
domain
Ammari,
non
Henrot
.
and
a
T
results.
ucsnak
a
[4
exp
℄
Similarly
Ammari
℄
and
alue
Jellouli
denotes
[5
e
,
v
6
for
℄
w
Ammari,
of
Jellouli
.
and
giv
Khenissi
and
℄
for
and
to
Xu,
energy
Liu
ab
and
Liu
not
[29
℄
do
In
y
these
do
pap
estigate
ers,
its
some
but
sucien
a
t
w
ts
but
are
the
giv
Remark
en
p
in
of
order
Our
to
based
guaran
of
tee
estimates
some
without
stabilities
e
of
the
these
system.
estimates
On
frequency
the
The
trary
the
,
represen
if
[16
osed
ma
supp
oid
also
the
is
d
y
quite
dela
the
the
that
a
is
and
if
estimate
w
stabilit
e
ha
giv
v
and
e
for
only
tial
the
our
dela
6
y
a
part
assuming
in
in
the
v
b
an
oundary/transmission
ativ
system
of
(1)
the
ma
ertex
y
Note
b
w
ecome
sho
unstable.
the
See,
y
for
an
energy
Datk
W
o,
further
Lagnese
e
and
P
sucien
olis
[19
the
℄
y
for
zero
the
the
example
.
of
the
a
o
string.
e
Therefore
tion
it
es
is
hold,
in
e
teresting
that
to
energy
seek
es
for
stabilization
.
results
e
in
not
general
v
1-d
this
the
in
w
full
rst
y
e
study
in
sucien
particular
No
the
if
onen
represen
the
of
energy
of
W
string
.
a
that
t
past,
for
net
e
w
giv
orks
a
when
and
the
t
parameters
for
ers,
exp
b
tial
um
y
n
the
real
.
and
e
e
nd
nonnegativ
sucien
xed
are
the
where
olynomial
nally
y
the
the
abilit
.
estimate
metho
indep
is
t
on
the
use
y
observ
The
y
er
of
organized
problem
follo
damping.
After
w
ha
some
e
and
hosen
w
obtain
sho
observ
in
y
b
that
a
problem
domain
w
d.
p
use
Then
other
hniques
w
e
pro
d'Alem
e
ert
tation
of
ula
appropriate
,
and
℄
e
y
v
sucien
the
of
h
frequency
tees
metho
but
to
e
of
often
energy
optimal
y
is
for
oted
energy
the
Note
of
that
are
observ
b
y
oth
is
nonzero.
enden
In
of
the
dela
sp
term.
ecial
pap
is
of
as
one
ws.
string
the
and
of
a
denitions
notations,
k
e
la
w
w
the
at
one
our
extremit
is
y
ell
,
osed.
this
in
problem
3,
has
e
b
v
een
the
studied
y
b
an
y
energy
Xu,
giv
Y
a
ung
and
and
t
Li
whic
[30
guaran
℄
the
where
y
the
0
authors
the
use
.
a
4
sp
dev
ectral
to
analysis.
pro
F
of
or
regularit
the
result
w
an
a
priori
v
used
e
the
equation
y
in
In
higher
5
dimensional
e
space
e
domain,
w
sucien
e
refer
the
to
onen
[25
stabilit
℄
of
In
system.
with
is
[30
with
,
3
25a . b
C a b a ≤ C b a ∼ b
a.b b.a
2 2L (R) ={u :R→R;u ∈L (0,l ),∀j = 1,···,N},j j
k·k 2 VL (R)
NY
1V :={φ∈ H (0,l ) : φ (v) =φ (v)∀j, k∈E ,∀v∈V ; φ (v) = 0∀v∈D},j j k v int jv
j=1
ZN ljX ˜∂φ ∂φj j˜<φ, φ> = dx.V
∂x ∂x0j=1
1 1u∈ L (R) ={u :R→R;u ∈ L (0,l ),∀j = 1,···,N}j j
Z ZN ljX
u = u (x)dx.j
R 0j=1
2A L (R)
NY X∂uj2D(A) := {u∈V ∩ H (0,l ) : (v) = 0,∀v∈V ;j int
∂njj=1 j∈Ev
∂ujv c(v) = 0,∀v∈N ∪V },ext∂njv
2∂ uj
(Au) = − ∀j = 1,···,N,∀u∈D(A).j 2∂x
2(L (R),V,a) a
ZN ljX ∂u ∂vj j
a(u,v) = dx,∀u,v∈V.
∂x ∂x0j=1
osedness
without
group
but
extension
(1)
h
to
is
similar
where
system
will
the
hold
with
sho
erator
asso
F
No
y
w
often
w
t
e
notation
in
2
tro
W
(1)
the
e
erator
the
w
is
op
ose,
from
use
spatial
Hilb
the
In
℄
tro
indep
in
and
in
.
to
that
itself
ultaneously
b
ell
y
the
e
aim
w
that
uses,
op
future
p
or
t
whic
it
h
is
the
a
ell-p
Hilb
that
ert
e
space
bilinear
for
dened
the
space
natural
e
inner
,
pro
an
from
Its
e
for
t
shortness
enden
or
of
F
sucien
that
t
The
means
for
and
the
sim
p
.
olynomial
W
stabilit
p
y
of
of
problem
our
e
system.
to
Finally
w
w
problem
e
This
end
erator
up
a
with
ositiv
asso
selfadjoin
op
some
since
illustrativ
is
e
F
examples
hs
in
of
triple
7.
w
In
osed.
the
or
whole
purp
pap
w
,
pro
the
inner
form
the
is
with
b
ed
semi-
equipp
ert
er
the
the
b
further
damping.
.
notation
Let
means
theory
that
and
there
idea
exists
write
e
[25
F
tro
b
a
y
p
denoted
ositiv
b
e
norm
op
4
eratorNY
2X =V∩ H (0,l )j
j=1
(u,v) = (u,v) 2 +(Δu,Δv) 2 ,∀u,v∈X,X L (R) L (R)
2∂ uj
(Δu) = ∀j = 1,···,N,u∈X.j 2∂x
∂uv ∈ V z (ρ,t) = (v, t− τ ρ)c v v∂t
ρ ∈ (0, 1) t > 0
2 2∂ u ∂ uj j (x, t)− (x, t) = 0 0<x<l , t> 0,∀j∈{1,...,N},2 2 j ∂t ∂x ∂z ∂zv v τ (ρ, t)+ (ρ, t) = 0 0<ρ< 1, t> 0,∀v∈V , v c∂t ∂ρ u (v, t) =u (v, t) =u(v,t) ∀j, l∈E , v∈V ,t> 0, j l v int X ∂u (v) (v) j ∂u (v, t) =−(α (v, t)+α z (1,t)) ∀v∈V ,t> 0, v c1 2∂n ∂t j j∈Ev X ∂uj c(v, t) = 0 ∀v∈V \V ,t> 0,int int∂nj
j∈E v u (v,t) = 0 ∀v∈D,t> 0,j v ∂ujv (v,t) = 0 ∀v∈N,t> 0, ∂njv ∂u z (0, t) = (v, t) ∀v∈V , t> 0, v c∂t (0) ∂u (1) u(t = 0) =u , (t = 0) =u , ∂t 0z (ρ, 0) =f (−τ ρ) ∀v∈V , 0<ρ< 1.v v cv
z t,ρv
t = 0 ρ = 0
z = (z )v v∈Vc
∂u ⊤U := (u, , z) ,
∂t
U
2∂u ∂ u ∂z ∂u 1 ∂zv′ ⊤ ⊤U = ( , , ) = ( , Δu,−( ) ) .v∈Vc2∂t ∂t ∂t ∂t τ ∂ρv
′U =AU,
0 1 0 ⊤U(0) = (u ,u , (f (−τ .)) ) ,v v
A
wu
ΔuA w :=
1 ∂zv−( )z vτ ∂ρv
where
in
it
tro
in
tro
Note
an
the
a
auxiliary
Let
us
v
If
ariable
ha
that
v
,
where
for
y
and
and
.
k
In
inner
this
e
manner,
pro
and
w
whic
datum
(2)
ariables,
to
set
t
ort
alen
op
equiv
dened
is
satises
(1)
satises
h
(1)
is
our
a
further
F
problem
Hilb
in
ert
w
and
.
(1)
in
and
term
e
y
at
dela
initial
the
with
eliminate
v
Consequen
e
tly
the
the
equation
problem
transp
(2)
the
ma
erator
y
is
b
b
e
follo
rewritten
as
ws.
transform
the
No
rst
then
order
w
ev
system
olution
to
equation
(3)
or
space
set
all
e
let
with
w
the
as
w
5
eNY
2 1 VcD(A) :={(u,w, z)∈ (V ∩ H (0, l ))×V ×H (0, 1) :j
j=1
X ∂uj (v) (v)
(v) =−(α w(v)+α z (1))∀v∈V ;v c1 2∂nj
j∈EvX
∂uj c(v) = 0∀v∈V \V ;int int∂nj
j∈Ev
∂ujv(v) = 0∀v∈N ; z (0) =w(v)∀v∈V },v c∂njv
V Vc c
2 2 VcH :=V ×L (R)×L (0, 1) ,
* + Z Zu u˜ N l 1jX X∂u ∂u˜j j w , w˜ = ( +w w˜ )dx+ z (ρ)z˜ (ρ)dρ.j j v v
∂x ∂x0 0z z˜ j=1 v∈Vc
D(A) H
⊤(f, g,h) ∈H D(A),
* + Z Zu f N l 1jX X∂u ∂fj j 0 = w , g = ( +w g )dx+ z (ρ)h (ρ)dρ,j j v v
∂x ∂x0 0z h j=1 v∈Vc
⊤(u, w, z) ∈D(A).
Vcu = 0 w = 0 z ∈D(0, 1) (0, 0, z)∈D(A),
Z 1X
z (ρ)h (ρ)dρ = 0.v v
0v∈Vc
2D(0, 1) L (0, 1), h = 0.
N NY Y
2D(0, l ) L (0, l ), u = 0j j
j=1 j=1
NY
z = 0 w∈ D(0, l ) g = 0.j
j=1
ZN ljX ∂u ∂fj j
0 = dx,∀(u,w, z)∈D(A).
∂x ∂x0j=1
is
is
for
dense
e
in
y
get
pro
des
inner
o
and
.
w
usual
of
the
in
with
b
ed
The
equipp
e
space
is
As
in
.
Lemma
ert
um
b
b
of
no
taking
tak
Hilb
is
the
that
with
,
all
as
ab
manner
v
same
orthogonalit
and
the
then
w
to
namely
dense
in
domain
tro
is
of
where
ts
the
elemen
n
that
Since
2.1
e
er
Let
No
Pro
e
of.
w
.
all
W
to
rst
orthogonal
e
e
dense
w
and
e
see
y
6
Inw = 0 z = 0,
ZN ljX ∂u ∂fj j
dx = 0,∀(u, 0, 0)∈D(A).
∂x ∂x0j=1
(u, 0, 0)∈D(A) u∈D(A).
D(A) V < ., . >V
f = 0
(v) (v)
α ≤α ,∀v∈V .c2 1
A C0
H
vξ
(v) (v) (v)(v)τ α ≤ξ ≤τ (2α −α ),∀v∈V .v v c2 1 2
H
* + Z Zu u˜ N l 1jX X∂u ∂u˜j j (v) w , w˜ = ( +w w˜ )dx+ ξ ( z (ρ)z˜ (ρ)dρ)j j v v
∂x ∂x0 0z z˜ j=1 v∈VcH
H
U ∈ H0
U ∈C([0, +∞),H) U ∈D(A)0
1U ∈C([0, +∞), D(A))∩C ([0, +∞),H).
A
⊤A U = (u,w, z) ∈D(A)
* +
w u
(AU, U) = Δu , w
1 ∂zv−( ) zvτ ∂ρv H
Z ZN l 1j 2X X∂w ∂u ∂ u 1 ∂zj j j v(v)
= ( + w )dx+ ξ ( − (ρ)z (ρ)dρ).j v2∂x ∂x ∂x τ ∂ρv0 0j=1 v∈Vc
b
exist
ts
e
w
,
this
then
pro
These
in
Since
ositiv
it
is
ose
w
.
that
to
wn
inner
if
or
kno
ose
and
if
only
ourselv
if
(4).
on
no
(3).
pro
e
inner
of
wing
usual
in
alen
ell
k
-semi-
dense
.
is
purp
that
(equipp
real
e
op
Mor
erator
that
solution
w
Pro
(4)
of.
that
By
no
Lumer-Phillips'
to
theorem,
the
it
tro
suces
w
to
sho
inner
w
the
that
t
unique
equiv
is
is
dissipativ
pro
e
This
and
group
maximal
sho
monotone.
F
W
that
e
ose,
rst
e
pro
ho
v
By
e
p
that
e
a
n
is
over,
dissipativ
um
e.
ers
T
will
ak
e
e
to
exists
h
e
(5)
ther
W
,
the
Under
generates
e
a
w
wing
follo
o
supp
w
Let
es
to
oblem
that
that
us
datum
.
initial
and
an
pr
w
),
in
w
obtain
inner
w
the
Then
or
But
the
pro
F
e
2.2
easily
Theorem
.
ed
7
withZN l 2X j ∂ uj
(AU, U) = (−wj 2∂x0j=1
ZN 12 (v)X X∂ u ∂u ξ ∂zj j l vj+ w )dx+ [w ] − ( (ρ)z (ρ)dρ)j j v02∂x ∂x τ ∂ρv 0j=1 v∈Vc
ZN 1(v)X X∂u ξ ∂zj l vj= [w ] − ( (ρ)z (ρ)dρ).j v0∂x τ ∂ρv 0j=1 v∈Vc
Z 1
∂z 1v 2 2(ρ)z (ρ)dρ = (z (1)−z (0)).v v v∂ρ 20
⊤(u,w, z) ∈
D(A)
NX XX
∂u l ∂uj j j
[w ] = w (v) (v)j j0∂x ∂nj
j=1 v∈Vj∈EvX X X X
∂u ∂u ∂uj j jv v= w (v) (v)+ w (v) (v)+ w (v) (v)j j jv v∂n ∂n ∂nj j jv v
v∈V j∈E v∈D v∈Nc vX X
∂uj+ w (v) (v)j ∂nj
cv∈V \V j∈Eint vintX X X X
∂u ∂uj j= ( (v))w (v)+ ( (v))w (v)j j∂nj ∂nj
cv∈V j∈E v∈V \V j∈Ec v int vintX
(v) (v)
= −(α w(v)+α z (1))z (0)v v1 2
v∈VcX
(v) (v)2= − (α z (0) +α z (1)z (0)).v v v1 2
v∈Vc
X X (v)(v) (v) ξ 2 22(AU, U) = − (α z (0) +α z (1)z (0))− (z (1)−z (0))v v v1 2 v v2τv
v∈V v∈Vc cX (v) (v)(v) (v)ξ ξ2 2= − [(α − )z (0) + z (1)+α z (1)z (0)].v v v1 v 22τ 2τv v
v∈Vc
(v) (v)
α α(v) 2 2 2 2−α z (1)z (0)≤ z (1)+ z (0)v v2 v v
2 2
(v) (v)(v) (v)X ξ α ξ α(v) 2 2 2 2(AU, U)≤− [(α − − )z (0) +( − )z (1)]v1 v2τ 2 2τ 2v vv∈Vc
b
w
Again
8
b
y-Sc
e
therefore
By
to
Moreo
By
parts
e
in
v
e
ha
parts,
e
v
w
e
arz's
v
,
and
y
leads
b
y
satised
tegration
an
inequalit
obtain
y
ha
h
w
w
prop
y
yield
tegrating
the
in
y
These
b
er
erties
oundary/transmission
b
Cauc
h(v) (v)(v) (v)(v) ξ α ξ α (v) (v)2 2α − − ≥ 0 − ≥ 0 α α1 2τ 2 2τ 2 1 2v v
(AU, U)≤ 0 A
A λI−A
λ> 0
⊤ ⊤(f, g,h) ∈H U = (u,w, z) ∈D(A)
u f
w g(λI−A) =
z h
λu −w =f ∀j∈{1,...,N},j j j
2∂ ujλw − =g ∀j∈{1,...,N},j 2 j∂x 1 ∂z vλz + =h ∀v∈V .v v cτ ∂ρv
u
j∈{1,...,N},
1w :=λu −f ∈H (0,l )j j j j
w (v) =λu (v)−f (v) = 0 v∈Dj j jv v v
z w(v) =z (0). v∈V , zv c v
1 ∂zv
λz + =hv v
τ ∂ρv
z (0) =w(v) =λu(v)−f(v).v
zv
Z ρ
−λτ ρ −λτ ρ −λτ ρ λτ σv v v vz (ρ) =λu(v)e −f(v)e +τ e e h (σ)dσ.v v v
0
u
z w
R 1−λτ −λτ −λτ λτ σv v v vz (1) = λu(v)e −f(v)e +τ e e h (σ)dσv v v0
−λτ 0v= λu(v)e +z (v)v
R 10 −λτ −λτ λτ σv v vz (v) = −f(v)e +τ e e h (σ)dσv vv 0
f h
u uj
2∂ uj2λ u − =g +λf .j j j2∂x
determine
e
Indeed,
w
maximal
and
n
nd
and
e
e
and
w
since
erties,
m
prop
that
appropriate
tial
the
no
with
eness
found
is
is
dep
It
that
and
means
W
This
e
(7)
i.
tly
that
Supp
the
ose
pro
that
with
w
.
e
the
ha
ws
v
xed
e
b
found
only
alen
This
with
to
y
By
b
then
en
satisfy
giv
that
explicitly
for
is
is
the
e.,
appropriate
monotone,
Therefore
is
regularit
equation
y
dieren
.
satises
Then
v
for
w
all
us
equiv
for
or
Let
(6)
of
of
dissipativ
solution
then
for
that
ok
sho
lo
a
e
real
W
um
.
er
Let
ending
w
on
e
and
ha
.
v
remains
nd
oundary
.
b
(7)
the
(8),
and
where
ust
e
e
(8)
in
.
with
some
b
v
ecause
ha
satisfy
particular
and
surjectiv
for
(5).
e
.
Note
9
.φj
Z ZN N Nl lj 2 jX X X∂ u ∂u ∂φ ∂uj j j j l2 2 j(λ u − )φ dx = (λ u φ + )dx− [ φ ]j j j j j 02∂x ∂x ∂x ∂x0 0j=1 j=1 j=1
ZN ljX XX∂u ∂φ ∂uj j j2= (λ u φ + )dx− (v)φ (v).j j j
∂x ∂x ∂nj0j=1 v∈Vj∈Ev
⊤(u, w, z) D(A)
XX X X X
∂u ∂u ∂uj j jv(v)φ (v) = (v)φ (v)+ (v)φ (v)j j jv∂n ∂n ∂nj j jv
v∈Vj∈E v∈V j∈E v∈Dv c vX X X
∂u ∂uj jv+ (v)φ (v)+ (v)φ (v)j jv∂n ∂nj jv
cv∈N v∈V \V j∈Eint vintX X
∂uj= ( (v))φ(v)
∂nj
v∈V j∈Ec vX
(v) (v)
= − (α w (v)+α z (1))φ(v).j v1 2
v∈Vc
z (1)v
NX XRlj ∂u ∂φ (v) (v)2 j j −λτv(λ u φ + )dx + (α +α e )λu(v)φ(v)j j 1 20 ∂x ∂x
j=1 v∈Vc
NXRlj
= (g +λf )φ dxj j j0
j=1X
(v) (v) 0+ (α f(v)−α z (v))φ(v), ∀φ∈V.1 2 v
v∈Vc
u ∈ V
NY
V φ∈ D(0, l )⊂ Vj
j=1
u
2∂ uj2 ′λ u − =g +λf D (0,l ) ∀j = 1,···,N.j j j j2∂x
N NY Y
2 2u ∈ H (0, l ) u ∈ V ∩ H (0, l )j j
j=1 j=1
X X
∂u (v) (v) (v) (v)j −λτ 0v[ (v)+(α +α e )λu(v)+(α z (v)−α f(v))]φ(v)v∂n 1 2 2 1j
v∈V j∈Ec v X X X
∂u∂uj j
=− (v)φ (v)− ( (v))φ (v),∀φ∈V.j j∂n ∂nj j
cv∈N v∈V \V j∈Evint int
in
e
side
in
in
w
lemma,
for
and
expression
e
b
v
parts,
o
unique
ab
at
the
e
Using
(9)
e
the
v
implies
ha
y
e
b
satises
y
w
has
then
.
,
Coming
,
(9)
to
elong
is
b
of
ust
left-hand
m
ecause
that
that
the
Lax-Milgram's
using
w
But
y
obtain
tegration
e
using
nd
solution
b
a
This
problem
in
then
b
e
b
the
arriv
tegrating
This
problem
to
and
tit
and
this
(9)
b
on
space
,
tegrating
test
e
w
in
parts,
function
y
a
y
e
y
w
iden
If
Multiplying
.
10
k
Access to the YouScribe library is required to read this work in full.
Discover the services we offer to suit all your requirements!