Read anywhere, anytime
Description
Subjects
Informations
Published by | pefav |
Reads | 11 |
Language | English |
Exrait
Thepseudo-effectiveconeofa
compactKa¨hlermanifoldand
varietiesofnegativeKodairadimension
Se´bastienBoucksom
1
MihaiPa˘un
3
1
Universite´deParisVII
InstitutdeMathe´matiques
175rueduChevaleret
75013Paris,France
3
Universite´deStrasbourg
De´partementdeMathe´matiques
67084Strasbourg,France
Jean-PierreDemailly
2
ThomasPeternell
4
2
Universite´deGrenobleI,BP74
InstitutFourier
UMR5582duCNRS
38402Saint-Martind’He`res,France
4
Universita¨tBayreuth
MathematischesInstitut
D-95440Bayreuth,Deutschland
Abstract.
Weprovethataholomorphiclinebundleonaprojectivemanifoldispseudo-effective
ifandonlyifitsdegreeonanymemberofacoveringfamilyofcurvesisnon-negative.Thisisa
consequenceofadualitystatementbetweentheconeofpseudo-effectivedivisorsandtheconeof
“movablecurves”,whichisobtainedfromageneraltheoryofmovableintersectionsandapproximate
Zariskidecompositionforclosedpositive(1
,
1)-currents.Asacorollary,aprojectivemanifoldhasa
pseudo-effectivecanonicalbundleifandonlyifitisisnotuniruled.Wealsoprovethata4-foldwith
acanonicalbundlewhichispseudo-effectiveandofnumericalclasszeroinrestrictiontocurvesofa
goodcoveringfamily,hasnonnegativeKodairadimension.
(1)
§
0Introduction
Oneofthemajoropenproblemsintheclassificationtheoryofprojectiveorcompact
Ka¨hlermanifoldsisthefollowinggeometricdescriptionofvarietiesofnegativeKodaira
dimension.
0.1Conjecture.
Aprojective
(
orcompactKa¨hler
)
manifold
X
hasKodairadimension
κ
(
X
)=
−∞
ifandonlyif
X
isuniruled.
Onedirectionistrivial,namely
X
uniruledimplies
κ
(
X
)=
−∞
.Also,thecon-
jectureisknowntobetrueforprojectivethreefoldsby[Mo88]andfornon-algebraic
Ka¨hlerthreefoldsby[Pe01],withthepossibleexceptionofsimplethreefolds(recallthat
avarietyissaidtobesimpleifthereisnocompactpositivedimensionalsubvariety
throughaverygeneralpointof
X
).Inthecaseofprojectivemanifolds,theproblem
canbesplitintomoretractableparts:
(1)
TheoriginalversionofthepresentpaperhasbeenbeenforwardedverylongagotoarXiv(inMay
2004),andhasbeenrevisedseveraltimessincethen.Ithadalsobeensubmittedtoajournalin2004,
butthenthesubmissionwascancelledaftertherefereeexpressedconcernsaboutcertainpartsofthe
paper,astheywerewrittenatthattime.Althoughtheresultsofsections1-5havebeenreproduced
severaltimes,e.g.inlecturenotesofthesecondnamedauthororinRobLazarsfeld’sbook[Laz04],a
completeversionneverappearedinarefereedjournal.WethanktheJournalofAlgebraicGeometry
forsuggestingtorepairthisomission.
2Thepseudo-effectiveconeofcompactKa¨hlermanifolds
A.
Ifthecanonicalbundle
K
X
isnotpseudo-effective,i.e.notcontainedintheclosure
oftheconespannedbyclassesofeffectivedivisors,then
X
isuniruled.
B.
If
K
X
ispseudo-effective,then
κ
(
X
)
≥
0
.
IntheKa¨hlercase,thestatementsshouldbeessentiallythesame,exceptthateffective
divisorshavetobereplacedbyclosedpositive(1
,
1)-currents.
PartBagainsplitsintotwopieces:
B1.
If
K
X
ispseudo-effectivebutnotbig,i.e.ontheboundaryofthepseudo-effective
cone,thenthereexistsacoveringfamilyofcurves
(
C
t
)
suchthat
K
X
·
C
t
=0
.
B2.
If
K
X
ispseudo-effectiveandthereexistsacoveringfamily
(
C
t
)
ofcurveswith
K
X
·
C
t
=0
,
then
κ
(
X
)
≥
0
.
Inthispaperwegiveapositiveanswerto(A)forprojectivemanifoldsofany
dimension,anddealwith(B2),mostlyindimension4.Part(A)followsinfactfroma
muchmoregeneralfactwhichdescribesthegeometryofthepseudo-effectivecone.
0.2Theorem.
Alinebundle
L
onaprojectivemanifold
X
ispseudo-effectiveifand
onlyif
L
·
C
≥
0
forallirreduciblecurves
C
whichmoveinafamilycovering
X
.
Inotherwords,thedualconetothepseudo-effectiveconeistheclosureofthecone
of“movable”curves.Thisshouldbecomparedwiththedualitybetweenthenefcone
andtheconeofeffectivecurves.
0.3Corollary
(Solutionof(A))
.
Let
X
beaprojectivemanifold.If
K
X
isnotpseudo-
effective,then
X
iscoveredbyrationalcurves.
Infact,if
K
X
isnotpseudo-effective,thenby(0.2)thereexistsacoveringfamily
(
C
t
)ofcurveswith
K
X
·
C
t
<
0,sothat(0.3)followsbyawell-knowncharacteristic
p
argumentofMiyaokaandMori[MM86](thesocalledbend-and-breaklemmaessentially
amountstodeformthe
C
t
sothattheybreakintopieces,oneofwhichisarational
curve).
IntheKa¨hlercasebothasuitableanalogueto(0.2)andthetheoremofMiyaoka-
Moriareunknown.Itshouldalsobementionedthatthedualitystatementfollowing
(0.2)isactually(0.2)for
R
-divisors.Theproofisbasedonauseof“approximate
Zariskidecompositions”andanestimateforanintersectionnumberrelatedtothis
decomposition.Amajortoolisthevolumeofan
R
-divisorwhichdistinguishesbig
divisors(positivevolume)fromdivisorsontheboundaryofthepseudo-effectivecone
(volume0).
Concerning(B2)weneedtodistinguishbetweencoveringbutnotconnectingfam-
ilies(
C
t
)ononeside,andconnectingfamiliesontheotherside.Thislatterterm
“connecting”meansthatanytwopointcanbejoinedbyachainofcurves
C
t
.
For
technicalpurposesitishoweverbettertoconsider
stronglyconnecting
families,i.e.,
anytwosufficientlygeneralpointscanbejoinedbyachainofirreducible
C
t
′
s.If
X
has
agoodminimalmodelviacontractionsandflips,then
X
clearlyadmitsacoveringnon-
connectingorastronglyconnectingfamily(
C
t
)suchthat
K
X
·
C
t
=0;moreoverif
X
simplyhasagoodminimalmodel,thenatleastafterblowingupthiswillbethecase.
Letussaythat(
C
t
)isagoodcoveringfamily,if(
C
t
)isacovering,non-connecting
§
1Positiveconesinthespacesofdivisorsandofcurves3
familyorastronglyconnectingfamily.ThenourremarksjustifythedivisionofProb-
lem(B)intothetwoparts(B1)and(B2),possiblybyreplacing“coveringfamilies”by
“goodcoveringfamilies”.
0.4Theorem.
Let
X
beasmoothprojective
4
-fold.Assumethat
K
X
ispseudo-
effectiveandthereisagoodcoveringfamily
(
C
t
)
ofcurvessuchthat
K
X
·
C
t
=0
.
Then
κ
(
X
)
≥
0
.
Oneimportantingredientoftheproofof(0.4)isthequotientdefinedbythefamily
(
C
t
).Thereasonfortherestrictiontodimension4isthatweuse
C
n,m
andthe
logminimalmodelprogramonthebaseofthequotientofthefamily(
C
t
)
.
Inone
circumstancehoweverwehaveageneralresult:
0.5Theorem.
Let
X
beaprojectivemanifoldand
(
C
t
)
astronglyconnectingfamily
ofcurves.Let
L
beapseudo-effective
R
−
divisorwith
L
·
C
t
=0
.
Thenthenumerical
dimension
ν
(
L
)=0
.
If
L
isCartier,then
L
isnumericallyequivalenttoalinebundle
L
′
with
κ
(
L
′
)=0
.
If
L
=
K
X
,theninconnectionwith[CP09]weobtain
κ
(
X
)=0
.
Inordertoobtain
theanswertoProblem(B1)(e.g.indimension4),wewouldstillneedtoprovethat
K
X
iseffectiveif
K
X
ispositiveonallgoodcoveringfamiliesofcurves.Infact,inthat
case,
K
X
shouldbebig,i.e.ofmaximalKodairadimension.
§
1Positiveconesinthespacesofdivisorsandofcurves
Inthissectionweintroducetherelevantcones,bothintheprojectiveandKa¨hler
contexts–inthelattercase,divisorsandcurvesshouldsimplybereplacedbypositive
currentsofbidimension(
n
−
1
,n
−
1)and(1
,
1),respectively.Weimplicitlyusethatall
(DeRham,resp.Dolbeault)cohomologygroupsunderconsiderationcanbecomputed
intermsofsmoothformsorcurrents,sinceinbothcaseswegetresolutionsofthesame
sheafoflocallyconstantfunctions(resp.ofholomorphicsections).
1.1Definition.
Let
X
beacompactKa¨hlermanifold.
(i)
TheKa¨hlerconeistheset
K
⊂
H
R
1
,
1
(
X
)
ofclasses
{
ω
}
ofKa¨hlerforms
(
thisis
anopenconvexcone
)
.
(ii)
Thepseudo-effectiveconeistheset
E
⊂
H
R
1
,
1
(
X
)
ofclasses
{
T
}
ofclosedpositive
currentsoftype
(1
,
1)(
thisisaclosedconvexcone
)
.Clearly
E
⊃
K
.
(iii)
TheNeron-Severispaceisdefinedby
NS
R
(
X
):=
H
R
1
,
1
(
X
)
∩
H
2
(
X,
Z
)
/
tors
⊗
Z
R
.
(iv)
Weset
K
NS
=
K
∩
NS
R
(
X
)
,
E
NS
=
E
∩
NS
R
(
X
)
.
Algebraicgeometerstendtorestrictthemselvestothealgebraicconesgeneratedby
ampledivisorsandeffectivedivisors,respectively.Using
L
2
estimatesfor
∂
,onecan
showthefollowingexpectedrelationsbetweenthealgebraicandtranscendentalcones
(see[Dem90],[Dem92]).
4Thepseudo-effectiveconeofcompactKa¨hlermanifolds
1.2Proposition.
Inaprojectivemanifold
X
,
E
NS
istheclosureoftheconvexcone
generatedbyeffectivedivisors,and
K
NS
istheclosureoftheconegeneratedbynef
R
-divisors.
Byextension,wewillsaythat
K
istheconeof
nef
(1
,
1)-cohomologyclasses(even
thoughtheyarenotnecessarilyintegral).Wenowturnourselvestoconesincohomo-
logyofbidegree(
n
−
1
,n
−
1).
1.3Definition.
Let
X
beacompactKa¨hlermanifold.
(i)
Wedefine
N
tobethe
(
closed
)
convexconein
H
R
n
−
1
,n
−
1
(
X
)
generatedbyclasses
ofpositivecurrents
T
oftype
(
n
−
1
,n
−
1)(
i.e.,ofbidimension
(1
,
1))
.
(ii)
Wedefinethecone
M
⊂
H
n
−
1
,n
−
1
(
X
)
of
movableclasses
tobetheclosureof
Rtheconvexconegeneratedbyclassesofcurrentsoftheform
µ
⋆
(
ω
e
1
∧
...
∧
ω
e
n
−
1
)
where
µ
:
X
e
→
X
isanarbitrarymodification
(
onecouldjustrestrictoneselfto
compositionsofblow-upswithsmoothcenters
)
,andthe
ω
e
j
areKa¨hlerformson
X
e
.
Clearly
M
⊂
N
.
(iii)
Correspondingly,weintroducetheintersections
N
NS
=
N
∩
N
1
(
X
)
,
M
NS
=
M
∩
N
1
(
X
)
,
inthespaceofintegralbidimension
(1
,
1)
-classes
N
1
(
X
):=(
H
R
n
−
1
,n
−
1
(
X
)
∩
H
2
n
−
2
(
X,
Z
)
/
tors)
⊗
Z
R
.
(iv)
If
X
isprojective,wedefine
NE(
X
)
tobetheconvexconegeneratedbyalleffective
curves.Clearly
NE(
X
)
⊂
N
NS
.
(v)
If
X
isprojective,wesaythat
C
isa
stronglymovablecurve
if
C
=
µ
⋆
(
A
e
1
∩
...
∩
A
e
n
−
1
)
forsuitableveryampledivisors
A
e
j
on
X
e
,where
µ
:
X
e
→
X
isamodification.
Welet
SME(
X
)
tobetheconvexconegeneratedbyallstronglymovable
(
effective
)
curves.Clearly
SME(
X
)
⊂
M
NS
.
(vi)
Wesaythat
C
isa
S
movablecurve
if
C
=
C
t
0
isamemberofananalyticfamily
(
C
t
)
t
∈
S
suchthat
t
∈
S
C
t
=
X
and,assuch,isareducedirreducible
1
-cycle.We
let
ME(
X
)
tobetheconvexconegeneratedbyallmovable
(
effective
)
curves.
Theupshotofthisdefinitionliesinthefollowingeasyobservation.
1.4Proposition.
Let
X
beacompactKa¨hlermanifold.ConsiderthePoincare´duality
pairing
Z
H
R
1
,
1
(
X
)
×
H
R
n
−
1
,n
−
1
(
X
)
−→
R
,
(
α,β
)
7−→
α
∧
β.
X
§
1Positiveconesinthespacesofdivisorsandofcurves5
Thenthedualitypairingtakesnonnegativevalues
(i)
forallpairs
(
α,β
)
∈
K
×
N
;
(ii)
forallpairs
(
α,β
)
∈
E
×
M
.
(iii)
forallpairs
(
α,β
)
where
α
∈
E
and
β
=[
C
t
]
∈
ME(
X
)
istheclassofamovable
curve.
Proof
.(i)isobvious.Inordertoprove(ii),wemayassumethat
β
=
µ
⋆
(
ω
e
1
∧
...
∧
ω
e
n
−
1
)
forsomemodification
µ
:
X
e
→
X
,where
α
=
{
T
}
istheclassofapositive(1
,
1)-current
on
X
and
ω
e
j
areKa¨hlerformson
X
e
.Then
ZZZXXXα
∧
β
=
T
∧
µ
⋆
(
ω
e
1
∧
...
∧
ω
e
n
−
1
)=
µ
∗
T
∧
ω
e
1
∧
...
∧
ω
e
n
−
1
>
0
.
Here,wehaveusedthefactthataclosedpositive(1
,
1)-current
T
alwayshasapull-back
µ
⋆
T
,whichfollowsfromthefactthatif
T
=
i∂∂ϕ
locallyforsomeplurisubharmonic
functionin
X
,wecanset
µ
⋆
T
=
i∂∂
(
ϕ
◦
µ
).For(iii),wesuppose
α
=
{
T
}
and
β
=
{
[
C
t
]
}
.Thenwetakeanopencovering(
U
j
)on
X
suchthat
T
=
i∂∂ϕ
j
with
suitableplurisubharmonicfunctions
ϕ
j
on
U
j
.Ifweselectasmoothpartitionofunity
θ
j
=1subordinateto(
U
j
),wethenget
PZZZXα
∧
β
=
T
|
C
t
=
θ
j
i∂∂ϕ
j
|
C
t
>
0
.
XC
t
jC
t
∩
U
j
Forthistomakesense,itshouldbenoticedthat
T
|
C
t
isawelldefinedclosedpositive
(1
,
1)-current(i.e.measure)on
C
t
foralmostevery
t
∈
S
,inthesenseofLebesgue
measure.Thisistrueonlybecause(
C
t
)covers
X
,thus
ϕ
j
|
C
t
isnotidentically
−∞
for
almostevery
t
∈
S
.Theequalityinthelastformulaisthenshownbyaregularization
argumentfor
T
,writing
T
=lim
T
k
with
T
k
=
α
+
i∂∂ψ
k
andadecreasingsequence
ofsmoothalmostplurisubharmonicpotentials
ψ
k
↓
ψ
suchthattheLeviformshave
auniformlowerbound
i∂∂ψ
k
>
−
Cω
(suchasequenceexistsby[Dem92]).Then,
writing
α
=
i∂∂v
j
forsomesmoothpotential
v
j
on
U
j
,wehave
T
=
i∂∂ϕ
j
on
U
j
with
ϕ
j
=
v
j
+
ψ
,andthisisthedecreasinglimitofthesmoothapproximations
ϕ
j,k
=
v
j
+
ψ
k
on
U
j
.Hence
T
k
|
C
t
→
T
|
C
t
fortheweaktopologyofmeasureson
C
t
.
If
C
isaconvexconeinafinitedimensionalvectorspace
E
,wedenoteby
C
∨
the
dualcone,i.e.thesetoflinearforms
u
∈
E
⋆
whichtakenonnegativevaluesonall
elementsof
C
.BytheHahn-Banachtheorem,wealwayshave
C
∨∨
=
C
.
Proposition1.4leadstothenaturalquestionwhetherthecones(
K
,
N
)and(
E
,
M
)
aredualunderPoincare´duality.Thisquestionisaddressedinthenextsection.Before
doingso,weobservethatthealgebraicandtranscendentalconesof(
n
−
1
,n
−
1)
cohomologyclassesarerelatedbythefollowingequalities(similartowhatwealready
noticedfor(1
,
1)-classes,seeProp.1.2).
1.5Theorem.
Let
X
beaprojectivemanifold.Then
(i)NE(
X
)=
N
NS
.
(ii)SME(
X
)=ME(
X
)=
M
NS
.
6Thepseudo-effectiveconeofcompactKa¨hlermanifolds
Proof
.(i)Itisastandardresultofalgebraicgeometry(seee.g.[Har70]),thatthecone
ofeffectiveconeNE(
X
)isdualtothecone
K
NS
ofnefdivisors,hence
N
NS
⊃
NE(
X
)=
K
∨
.
Ontheotherhand,(1.4)(i)impliesthat
N
NS
⊂
K
∨
,sowemusthaveequalityand(i)
follows.
Similarly,(ii)requiresadualitystatementwhichwillbeestablishedonlyinthenext
sections,sowepostponetheproof.
§
2Mainresultsandconjectures
First,thealreadymentioneddualitybetweennefdivisorsandeffectivecurvesex-
tendstotheKa¨hlercaseandtotranscendentalclasses.Moreprecisely,[DPa04]gives
1,12.1Theorem
(Demailly-Pa˘un,2001)
.
If
X
isKa¨hler,thenthecones
K
⊂
H
R
(
X
)
n
−
1
,n
−
1
and
N
⊂
H
R
(
X
)
aredualbyPoincare´duality,and
N
istheclosedconvexcone
generatedbyclasses
[
Y
]
∧
ω
p
−
1
where
Y
⊂
X
rangesover
p
-dimensionalanalytic
subsets,
p
=1
,
2
,...,n
,and
ω
rangesoverKa¨hlerforms.
Proof
.Indeed,Prop.1.4showsthatthedualcone
K
∨
contains
N
whichitselfcontains
thecone
N
′
ofallclassesoftheform
{
[
Y
]
∧
ω
p
−
1
}
.Themainresultof[DPa04]conversely
showsthatthedualof(
N
′
)
∨
isequalto
K
,sowemusthave
K
∨
=
N
′
=
N
.
Themainnewresultofthispaperisthefollowingcharacterizationofpseudo-
effectiveclasses(inwhichthe“onlyif”partalreadyfollowsfrom1.4(iii)).
2.2Theorem.
If
X
isprojective,thenaclass
α
∈
NS
R
(
X
)
ispseudo-effectiveif
(
and
onlyif
)
itisinthedualconeofthecone
SME(
X
)
ofstronglymovablecurves.
Inotherwords,alinebundle
L
ispseudo-effectiveif(andonlyif)
L
·
C
>
0for
all
movablecurves
,i.e.,
L
·
C
>
0foreveryverygenericcurve
C
(notcontained
inacountableunionofalgebraicsubvarieties).Infact,bydefinitionofSME(
X
),
itisenoughtoconsideronlythosecurves
C
whichareimagesofgenericcomplete
intersectionofveryampledivisorsonsomevariety
X
e
,underamodification
µ
:
X
e
→
X
.
Byastandardblowing-upargument,italsofollowsthatalinebundle
L
onanormal
Moishezonvarietyispseudo-effectiveifandonlyif
L
·
C
≥
0foreverymovablecurve
C
.
TheKa¨hleranalogueshouldbe:
2.3Conjecture.
ForanarbitrarycompactKa¨hlermanifold
X
,thecones
E
and
M
aredual.
Therelationbetweenthevariousconesofmovablecurvesandcurrentsin(1.5)is
nowaratherdirectconsequenceofTheorem2.2.Infact,usingideashintedin[DPS96],
wecansayalittlebitmore.Givenanirreduciblecurve
C
⊂
X
,weconsideritsnormal
“bundle”
N
C
=Hom(
I
/
I
2
,
O
C
),where
I
istheidealsheafof
C
.If
C
isageneral
§
2Mainresultsandconjectures7
memberofacoveringfamily(
C
t
),then
N
C
isnef.Now[DPS96]saysthatthedual
coneofthepseudo-effectiveconeof
X
containstheclosedconespannedbycurveswith
nefnormalbundle,whichinturncontainstheconeofmovablecurves.Inthiswaywe
:teg2.4Theorem.
Let
X
beaprojectivemanifold.Thenthefollowingconescoincide.
(i)
thecone
M
NS
=
M
∩
N
1
(
X
);
(ii)
theclosedcone
SME(
X
)
ofstronglymovablecurves
;
(iii)
theclosedcone
ME(
X
)
ofmovablecurves
;
(iv)
theclosedcone
ME
nef
(
X
)
ofcurveswithnefnormalbundle.
Proof
.Wehavealreadyseenthat
SME(
X
)
⊂
ME(
X
)
⊂
ME
nef
(
X
)
⊂
(
E
NS
)
∨
dnaSME(
X
)
⊂
ME(
X
)
⊂
M
NS
⊂
(
E
NS
)
∨
by1.4(iii).NowTheorem2.2implies(
M
NS
)
∨
=SME(
X
),and2.4follows.
2.5Corollary.
Let
X
beaprojectivemanifoldand
L
alinebundleon
X
.
(i)
L
ispseudo-effectiveifandonlyif
L
·
C
≥
0
forallcurves
C
withnefnormalsheaf
.NC(ii)
If
L
isbig,then
L
·
C>
0
forallcurves
C
withnefnormalsheaf
N
C
.
2.5(i)strenghtensresultsfrom[PSS99].Itishowevernotyetclearwhether
M
NS
=
M
∩
N
1
(
X
)isequaltotheclosedconeofcurveswith
ample
normalbundle(although
wecertainlyexpectthistobetrue).
ThemostimportantspecialcaseofTheorem2.2is
2.6Theorem.
If
X
isaprojectivemanifoldandisnotuniruled,then
K
X
ispseudo-
effective,i.e.
K
X
∈
E
NS
.
Proof
.ThisismerelyarestatementofCorollary0.3,whichwasprovedintheintro-
duction(asaconsequenceoftheresultsof[MM86]).
Theorem2.6canbegeneralizedasfollows.
2.7Theorem.
Let
X
beaprojectivemanifold
(
oranormalprojectivevariety
)
.Let
F
⊂
T
X
beacoherentsubsheaf.If
det
F
∗
isnotpseudo-effective,then
X
isuniruled.
Inotherwords,if
X
isnotuniruledand
Ω
1
X
→
G
isgenericallysurjective,then
det
G
ispseudo-effective.
Proof
.Infact,sincedet
F
∗
isnotpseudo-effective,thereexistsby(2.2)acovering
family(
C
t
)suchthat
c
1
(
F
)
·
C
t
>
0.Hence
X
isuniruledby[Miy87],[SB92].
2.8.Remark.
(1)In[CP09]Theorem2.7isgeneralizedtosubsheaves
F
⊂
T
X
⊗
m
.
8Thepseudo-effectiveconeofcompactKa¨hlermanifolds
(2)Supposein2.7thatonly
κ
(det
F
∗
)=
−∞
.Is
X
stilluniruled?Whatcanbesaid
if
c
1
(
F
∗
)isontheboundaryofthepseudo-effectivecone?
Turningtovarietieswithpseudo-effectivecanonicalbundles,wehavethe
2.9Conjecture
(partofthe“abundanceconjecture”)
.
If
K
X
ispseudo-effective,
then
κ
(
X
)
>
0
.
Thisproblemsplitsintotwoparts:
(1)
If
K
X
ispseudo-effectivebutnotbig,i.e.ontheboundaryofthepseudo-effective
cone,thenthereexistsa(good)coveringfamilyofcurve
(
C
t
)
suchthat
K
X
·
C
t
=0
.
(2)
If
K
X
ispseudo-effectiveandthereexistsagoodcoveringfamily
(
C
t
)
ofcurveswith
K
X
·
C
t
=0
,
then
κ
(
X
)
≥
0
.
Inthelastsectionwewillprove(2)indimension4,andevenpartsofitinany
dimension.
§
3Zariskidecompositionandmovableintersections
Let
X
becompactKa¨hlerandlet
α
∈
E
◦
beinthe
interior
ofthepseudo–effective
cone.Inanalogywiththealgebraiccontextsuchaclass
α
iscalled“big”,anditcan
thenberepresentedbya
Ka¨hlercurrent
T
,i.e.aclosedpositive(1
,
1)-current
T
such
that
T
>
δω
forsomesmoothhermitianmetric
ω
andaconstant
δ
≪
1.
3.1Theorem
(Demailly[Dem92],[Bou02b,3.1.24]
.
If
T
isaKa¨hlercurrent,thenone
canwrite
T
=lim
T
m
forasequenceofKa¨hlercurrents
T
m
whichhavelogarithmic
1poleswithcoefficientsin
m
Z
,i.e.therearemodifications
µ
m
:
X
m
→
X
suchthat
µ
⋆m
T
m
=[
E
m
]+
β
m
where
E
m
isaneffective
Q
-divisoron
X
m
withcoefficientsin
m
1
Z
(
the“fixedpart”
)
and
β
m
isaclosedsemi-positiveform
(
the“movablepart”
)
.
Proof
.Sincethisresulthasalreadybeenstudiedextensively,wejustrecallthemain
idea.Locallywecanwrite
T
=
i∂∂ϕ
forsomestrictlyplurisubharmonicpotential
ϕ
.
ByaBergmankerneltrickandtheOhsawa-Takegoshi
L
2
extensiontheorem,weget
localapproximations
1Xϕ
=lim
ϕ
m
,ϕ
m
(
z
)=log
|
g
ℓ,m
(
z
)
|
2
m2ℓwhere(
g
ℓ,m
)isaHilbertbasisofthespaceofholomorphicfunctionswhichare
L
2
with
respecttotheweight
e
−
2
mϕ
.ThisHilbertbasisisalsoafamilyoflocalgeneratorsof
thegloballydefinedmultiplieridealsheaf
I
(
mT
)=
I
(
mϕ
).Then
µ
m
:
X
m
→
X
is
obtainedbyblowing-upthisidealsheaf,sothat
µ
⋆m
I
(
mT
)=
O
(
−
mE
m
)
.
1Weshouldnoticethatbyapproximating
T
−
m
ω
insteadof
T
,wecanreplace
β
m
by
β
m
+
1
m
µ
⋆
ω
whichisabigclasson
X
m
;byplayingwiththemultiplicitiesofthe
§
3Zariskidecompositionandmovableintersections9
componentsoftheexceptionaldivisor,wecouldevenachievethat
β
m
isaKa¨hlerclass
on
X
m
,butthiswillnotbeneededhere.
Themorefamiliaralgebraicanaloguewouldbetotake
α
=
c
1
(
L
)withabigline
bundle
L
andtoblow-upthebaselocusof
|
mL
|
,
m
≫
1,togeta
Q
-divisordecompo-
sition
⋆µ
m
L
∼
E
m
+
D
m
,E
m
effective
,D
m
free
.
Suchablow-upisusuallyreferredtoasa“logresolution”ofthelinearsystem
|
mL
|
,
andwesaythat
E
m
+
D
m
isanapproximateZariskidecompositionof
L
.Wewillalso
usethisterminologyforKa¨hlercurrentswithlogarithmicpoles.
3.2Definition.
Wedefinethe
volume
,or
movableself-intersection
ofabigclass
α
∈
E
◦
tobe
Z
Vol(
α
)=sup
β
n
>
0
α∈TXewherethesupremumistakenoverallKa¨hlercurrents
T
∈
α
withlogarithmicpoles,
and
µ
⋆
T
=[
E
]+
β
withrespecttosomemodification
µ
:
X
e
→
X
.
ByFujita[Fuj94]andDemailly-Ein-Lazarsfeld[DEL00],if
L
isabiglinebundle,
wehave
!n0nVol(
c
1
(
L
))=
m
l
→
im
+
∞
D
m
=
m
l
→
im
+
∞
n
h
(
X,mL
)
,
mandintheseterms,wegetthefollowingstatement.
3.3Proposition.
Let
L
beabiglinebundleontheprojectivemanifold
X
.Let
ǫ>
0
.
Thenthereexistsamodification
µ
:
X
ǫ
→
X
andadecomposition
µ
∗
(
L
)=
E
+
β
with
E
aneffective
Q
-divisorand
β
abigandnef
Q
-divisorsuchthat
Vol(
L
)
−
ε
6
Vol(
β
)
6
Vol(
L
)
.
ItisveryusefultoobservethatthesupremuminDefinition3.2canactuallybe
computedbyacollectionofcurrentswhosesingularitiessatisfyafilteringproperty.
Namely,if
T
1
=
α
+
i∂∂ϕ
1
and
T
2
=
α
+
i∂∂ϕ
2
aretwoKa¨hlercurrentswithlogarithmic
polesintheclassof
α
,then
(3
.
4)
T
=
α
+
i∂∂ϕ,ϕ
=max(
ϕ
1
,ϕ
2
)
isagainaKa¨hlercurrentwithweakersingularitiesthan
T
1
and
T
2
.Onecoulddefine
aswell
(3
.
4
′
)
T
=
α
+
i∂∂ϕ,ϕ
=1log(
e
2
mϕ
1
+
e
2
mϕ
2
)
,
m2where
m
=lcm(
m
1
,m
2
)isthelowestcommonmultipleofthedenominatorsoccuring
in
T
1
,
T
2
.Now,takeasimultaneouslog-resolution
µ
m
:
X
m
→
X
forwhichthe
singularitiesof
T
1
and
T
2
areresolvedas
Q
-divisors
E
1
and
E
2
.Thenclearlythe
associateddivisorinthe
R
decomposition
µ
⋆m
T
=[
E
]+
β
isgivenby
E
=min(
E
1
,E
2
).
Bydoingso,thevolume
X
m
β
n
getsincreased,asweshallseeintheproofofTheorem
3.5below.
10Thepseudo-effectiveconeofcompactKa¨hlermanifolds
3.5Theorem
(Boucksom[Bou02b])
.
Let
X
beacompactKa¨hlermanifold.Wedenote
hereby
H
>
k,
0
k
(
X
)
theconeofcohomologyclassesoftype
(
k,k
)
whichhavenon-negative
intersectionwithallclosedsemi-positivesmoothformsofbidegree
(
n
−
k,n
−
k
)
.
(i)
Foreachinteger
k
=1
,
2
,...,n
,thereexistsacanonical“movableintersection
product”
k,kE
×···×
E
→
H
>
0
(
X
)
,
(
α
1
,...,α
k
)
7→h
α
1
·
α
2
···
α
k
−
1
·
α
k
i
suchthat
Vol(
α
)=
h
α
n
i
whenever
α
isabigclass.
(ii)
Theproductisincreasing,homogeneousofdegree
1
andsuperadditiveineachar-
gument,i.e.
′′′′′′
h
α
1
···
(
α
j
+
α
j
)
···
α
k
i
>
h
α
1
···
α
j
···
α
k
i
+
h
α
1
···
α
j
···
α
k
i
.
Itcoincideswiththeordinaryintersectionproductwhenthe
α
j
∈
K
arenefclasses.
(iii)
ThemovableintersectionproductsatisfiestheTeissier-Hovanskiiinequalities
h
α
1
·
α
2
···
α
n
i
>
(
h
α
1
n
i
)
1
/n
...
(
h
α
nn
i
)
1
/n
(
with
h
α
jn
i
=Vol(
α
j
))
.
(iv)
For
k
=1
,theabove“product”reducestoa
(
nonlinear
)
projectionoperator
E
→
E
1
,α
→h
α
i
ontoacertainconvexsubcone
E
1
of
E
suchthat
K
⊂
E
1
⊂
E
.Moreover,thereis
a“divisorialZariskidecomposition”
α
=
{
N
(
α
)
}
+
h
α
i
where
N
(
α
)
isauniquelydefinedeffectivedivisorwhichiscalledthe“negative
divisorialpart”of
α
.Themap
α
7→
N
(
α
)
ishomogeneousandsubadditive,and
N
(
α
)=0
ifandonlyif
α
∈
E
1
.
(v)
Thecomponentsof
N
(
α
)
alwaysconsistofdivisorswhosecohomologyclassesare
linearlyindependent,especially
N
(
α
)
hasatmost
ρ
=rank
Z
NS(
X
)
components.
Proof
.Weessentiallyrepeattheargumentsdeveloppedin[Bou02b],withsomesimpli-
ficationsarisingfromthefactthat
X
issupposedtobeKa¨hlerfromthestart.
(i)Firstassumethatallclasses
α
j
arebig,i.e.
α
j
∈
E
◦
.Fixasmoothclosed(
n
−
k,n
−
k
)
semi-positive
form
u
on
X
.WeselectKa¨hlercurrents
T
j
∈
α
j
withlogarithmicpoles,
andasimultaneouslog-resolution
µ
:
X
e
→
X
suchthat
µ
⋆
T
j
=[
E
j
]+
β
j
.
Weconsiderthedirectimagecurrent
µ
⋆
(
β
1
∧
...
∧
β
k
)(whichisaclosedpositivecurrent
ofbidegree(
k,k
)on
X
)andthecorrespondingintegrals
Zβ
1
∧
...
∧
β
k
∧
µ
⋆
u
>
0
.
Xe
Access to the YouScribe library is required to read this work in full.
Discover the services we offer to suit all your requirements!