Hochschild cohomology and combinatorial Dyson Schwinger equations in noncommutative

-

English
39 Pages
Read an excerpt
Gain access to the library to view online
Learn more

Description

Hochschild cohomology and combinatorial Dyson-Schwinger equations in noncommutative quantum field theory (NCQFT) ADRIAN TANASA˘ arXiv:0907.2182, J. Noncomm. Geom. (in press) (in collaboration with Dirk Kreimer) Villetaneuse, 21st of June 2011 ADRIAN TANASA˘ Combinatorial Dyson-Schwinger equations in NCQFT

  • renormalizable theories - building

  • quadratic part - propagation - edges

  • hopf algebra

  • field

  • qft

  • combinatorial dyson-schwinger

  • connes- kreimer hopf


Subjects

Informations

Published by
Reads 36
Language English
Report a problem
HochschildcohomologyandcombinatorialDyson-Schwingerequationsinnoncommutativequantumfieldtheory(NCQFT)ADRIANTANASA˘arXiv:0907.2182,J.Noncomm.Geom.(inpress)(incollaborationwithDirkKreimer)Villetaneuse,21stofJune2011DAIRNAATANS˘AoCbmnitaroailyDos-ncSwhniegrqeauitnosniNQCFT
alPnIntroduction-quantumfieldtheory(QFT)andcombinatoricsNCQFTandribbongraphsInsertionsofFeynmanribbongraphsTheB+operator-Hochschildone-cocycleoftheConnes-KreimerHopfalgebraofribbongraphsCombinatorialDyson-SchwingerequationsPerspectivesDAIRNAATANS˘AoCbmnitaroailyDos-ncSwhniegrqeauitnosniNQCFT
theaction(functionalinthefield)R4-the44R:Φquadraticpart-propagation-edgesnon-quadraticpart-interactionpotentialV[Φ(x)]=4λ!Φ4(x)-vertices:m-themassoftheparticle,λ-thecouplingconstantZX42S[Φ(x)]=d4x1Φ(x)+1m2Φ2(x)+λΦ4(x)2µ=1xµ24!cirtemnaedilcuE,)emit(ecapslanoisnemiddleralacsa-KshpargnamnyeFdnayroehtdleralacSTFQCNnisnoitauqeregniwhcS-nosyDlairotanibmoCA˘SANATNAIRDA