High order time space implicit discontinous Galerkin method with reduced evaluation costs

-

English
30 Pages
Read an excerpt
Gain access to the library to view online
Learn more

Description

Niveau: Supérieur
THE FRENCH AEROSPACE LAB Equations and Numerical Approach Numerical experiments Summary and outlook Time implicit high-order discontinuous Galerkin method with reduced evaluation costs Florent Renac 1 , Frederic Coquel 2 & Claude Marmignon 1 1 ONERA/DSNA/NUMF 2 CMAP, Ecole Polytechnique JSO High Fidelity Flow Simulations October 8th, 2010 ONERA Châtillon Implicit DG with reduced evaluation costs 1/30

  • jso high

  • low order

  • implicit procedure

  • nonlinear di?usion

  • high-order discontinuous

  • model problem

  • numerical experiments

  • ?? ·


Subjects

Informations

Published by
Reads 25
Language English
Report a problem

THE FRENCH AEROSPACE LAB
w1EquationscostsandteNumericalCh?tillonAppClaudero,aHighc8th,hDGNumerical2exprmignone2rPimentsJSOSummayryOctoband0outlorenac@onera.frokreducedTimequelimplicit&hMaigh-o1rderONERA/DSNA/NUMFdiscontinuousCMAPGalerkinEcolemethoolydchniquewithreducedFidelitevaluationFlocostsSimulationsFloerrent201ReONERAnacflorent.1Implicit,withFevaluationrederic1/30CoTHE FRENCH AEROSPACE LAB
steadyecientEquationsDGandoNumericalschemeApp.roDGaofcrabhAntNumericalinexper-StokecedureruncouplingimentsinSummaDOFryofandexpoutlo,ok1997.Motivationcostsandracticalgoal3DDGeq.)metphrodd:locompactDOFstencilelement:owapplicationell-suitedoforrequationsunstructuredwithmeshes,etalgoErithmerpparenac@onera.frrallreducedelizations,pBCappapplication.(e.g.timeNaviexplicitesdiscretization:Aim:strongestimplicitCroFLforestrictiontheassomethoci:atedoftowparderrabsoliceachtermreconstructiontimehigherimplicitrderdiscretizatisoton:solutihighncompnonlineautatipaoolicnalnumericalcosterimentsiBR2nBassiducedal.b2ndyTC,thewlaen,rflorent.geImplicitnumbwitherevaluationof2/30DOFTHE FRENCH AEROSPACE LAB
ImplicitdiusionEquationscedureandSummaNumericalnApperimentsroraoutlocevaluationhpNumericalNumericalexpnonlineae2DrequationimentsanSummaflorent.rywithand3/30outloImplicitokroOutline21expEquations1DandrNumericalequationAppnonlinearoachdiusionNonlinea3rrydiusiondequationokEntroprenac@onera.fryDGsolutioreducedncostsSpacediscretizatioTHE FRENCH AEROSPACE LAB
2DSpaceEquationswithandNumericalNumericalanAppEntropropanonlineacequationhflorent.Numerical4/30expsolutioenrcedureimentserimentsSummadiusionryrandSummaoutlooutlookImplicitNonlineaevaluationrequationdiusionyequationnEntropdiscretizatioyImplicitsorolution2Spaceexpdiscretization1DImplicitrpequationrononlineacedurediusionOutline31ryEquationsdandokNumericalrenac@onera.frAppDGroachreducedNonlineacostsrdiusion−∇·( ( , )∇ ) = ( ) Ω⊂R
( , ) ∈R ∂Ω = Γ ∪Γ
= Γ
∇ · = Γ
−∇·( ( , )∇ ) = ( ) Ω×( ,∞)
( , ) = ( ) Ω
THE FRENCH AEROSPACE LAB
fastuNonlinearellipticeinsokexppx0Numericalsolveind:hroblemcConsideraequationdu(1)0withWBwithromaxtApprupNumericaluaroblemnonlineadelrdiusionfunctionandofxuImplicitandxEquationsNandeBC(1)saontimeimentsrchingmetholutionusooutloyNonlineaDBEntropxequationuNe:thSummasflorent.xImplicitinwithmoevaluation0urD(2)ryICucedurexronpandugdiscretizationNSpaceonBurenac@onera.frdiusionDG5/30reducedDcostsonuU( )
U >
U
( , ) =U ( )
×∈R
( )
U =
( ) −∇·( ( )∇ ) = ( ) Ω×( ,∞)
THE FRENCH AEROSPACE LAB
folloisNumericalanrentropuuypafunctionryfoinr1(2)(inifpsolutionoutlouuCys00entropvsatisesobtainsBlineacedurecxabrofu:pandImplicitimentsdiscretizationxuuhCxSpaceNumericalxNonlinealutionuwhereokConesotheywingdrEntropspade)equationrflorent.olicImplicitroblemwithoevaluationv6/30udenitevmatrixtIntroSummaducertheechangeexpofvvacriableaurodiusionAppvandrEquationsus.t.isrenac@onera.fraDGpreducedocostssitiveΩ
[
Ω = Ω
=
V ={ϕ∈ (Ω ): ϕ| ∈P (Ω ), = , }Ω
X
P (Ω )={ϕ∈ (Ω ): ϕ( , )= α φ ( , )}
=
∈V
X
( , )= φ ( ) ( ) ∀ ∈Ω , ∈( ,∞)
=

+ =
= ( + )( + )
=
THE FRENCH AEROSPACE LAB
tiroljfoprtitionImplicitwp:discretizationjjoSpaceplutionvjNsop1spacey1Nk:EntroppwithNequationdphdiusioneakjhrrmNonlineaolynomialsokdiscontinuousoutloofandxLP20ryRemajeSummaDOFimentsdiscretizreeofx1expdiscreteypNumerical:hhNxptcplpal01rollxAppVljNumericaltxunctionandFyjEquationstcedureaSpacejdiscretNirhnumbzationr2fifsLerflorent.aImplicitonwithlement:evaluationp7/30hthe:solutionifvh1Wpe1lopok2fo2rda2numericalrenac@onera.frappDGrreducedocostsximationof∀ = ,...,
Z Z I Z
φ ( ) + ( θ )·∇φ − φ = φ ( )
Ω Ω ∂Ω Ω
θ , ∇ +
- +v vh hσ
= {∇ + }·


X

, ∀ ∈Ω
σ∈∂Ω

+ −Z Z +
{ }=σ + −
φ =− {φ}( − )
+ −Ω ∪Ω σ
THE FRENCH AEROSPACE LAB
jaRSpacefocedurejjdiscretroNumericalkdiusionhsovhdSdVAppwNumericalqroNjEntropand1kksuEquationsexpxSummacxrcostsaxrliftingBR2opwitheratohrsrpequationhyImplicitrdiscretizationhvxhlutionSpaceandCkhNumericalimentserrxhdrydSkopdtjevaluationvhhhvjhhnvmeanflorent.eratoImplicitrmulation:reducedkiertheoappoutloschemeandzationokpnhqNonlineavqximation2Crenac@onera.frofDGwithvhR8/30d+ ( ) =
Z
= φ φ ( )
Ω
( + ) ( ) ( )
( − )+ ( ) =
( ) = ( Δ )

= +
Δ ∂
= ×
O( )
THE FRENCH AEROSPACE LAB
rdMisdmatrix:V.dttSummadiscretizationRsizeimentsyVVrtheep0RemaMasssquamatriNx:rixMDOFklaexpnNumericalandhljrocMkSpaceak:lunsymmetricumatrixvDOFroNvmhisAppNdVxnBackwbackwadiscretizationrdTimeEulecedurerAscheme:impAicitequationAV1NumericaltnImplicitandR1VEquationsrdiusionAVanequation:realnrerofNonlineaNoklutionSemi-discretesoppcessHencerenac@onera.fratDGinversionreducedaschemeEntropEuler30withRrooutloflorent.costsImplicitandwithnevaluationry9/30V+ −ˆ ( , )
≤ ≤
< ≤
= =
+ +
+ +
v vh h
=
=
x xx xx j+ ½ x j+ ½j- ½ j- ½
+ - + -
THE FRENCH AEROSPACE LAB
moefsdiusionrepcedureresentecouplingpbImplicitetSummawNumericaleensimpDOFmplessimpcouplingsoappokea(a)rscthroughWnumericals.t.uxqmatrixefrvandh0:implicitSpacevEntropBasics:Whand(1/2)WvcoureductionNumericalhrocostEquationsLohigherwdeseringpcouplingpbImplicitet1Dwxaeenfomopdes2evaluationp(b)rocouplingprenac@onera.frdiscretizationDGlutionreducedycostsequationprroblemNonlinearesolution:outlomorydesimentss.t.r0fullcedureplingqexprohpasimpApp2andreconstructionWcoofbreducedy:florent.1Implicitlowithwevaluationo10/30rder