119 Pages
English

An infinite level atom coupled to a heat bath [Elektronische Ressource] / Martin Könenberg

Gain access to the library to view online
Learn more

Description

InformatikAninInniteMartinLev2008elergAergtomwcoupledMathematiktoJohannes-Gutenaersit?tHeat?nenBathorDissertationSczurhErlangungysik,dundesderGradesb"DoktorUnivderMainzNaturwissenscKhaften"bamgebFenacBadhhbalbacereicMainzhPhph2timesAbstracttationWSce,studyandtheelymathematicsTofequilibriumaofniteunitpartiwithcedlofefosystemofcoupleditstoatureaoheattobath.NoThethisStandardolution,Mothedelwingofed,Quanthesis:tumofElectrodingerdynarepresemicstheatdescribingtempsystemeraturermazerotempyieldsphaeHamitheltonianandlargeadescribingforthestatesenergyectorsofsenparticlestimeindescribteractingaidwithLphotons.TheInaretheproHeisenebinergthepicturesolutionsthethetimehr?eequationvrolution.ofothestatesphsystem.ysicalthesystemysicalisnearthetheactionlofataer-one-parameter-groupysicalofthelimitwthefoll-wtationansatzrepresenJaksicRPilletonconstructarepresensetofof.observw,ablesarethev:ininreprestatetationequilibriumtheanevofisexistenceedthethe-ofLiouvilleanStandardStandardiouvilleanthe.

Subjects

Informations

Published by
Published 01 January 2009
Reads 21
Language English

InformatikAninInniteMartinLev2008elergAergtomwcoupledMathematiktoJohannes-Gutenaersit?tHeat?nenBathorDissertationSczurhErlangungysik,dundesderGradesb"DoktorUnivderMainzNaturwissenscKhaften"bamgebFenacBadhhbalbacereicMainzhPhH
(τ )t t∈
A
τ : A7→τ (A), t∈ , A∈At t
τ H
A
T > 0 A
L
stateszeroequilibriumyieldsproatheHamidescribltonianrepreseElectrosystem.describingathesenenergyLofinparticlestheinlimitteractingewithandphotons.tempInectorsthetimeHeisenaidbareergepicturethethethetimetheerepresenvforolutionmicsofotheofphtoysicaltationsystemNoisunitthethisactionandofolution,awithone-parameter-grouptheeratureThetumwingQuanedofed,delelyMothesis:StandardofRtationontnessaLiouvilleansetofofinobserv-ableslargeTheph:atureatdyna,bath.wheatfollawtoansatzcoupledJaksicsystemPilleteconstructlrepresencofparti.nitew,aareofvRinmathematicsreprethetationstudytheeevNote,isthatedWtheisofrelatedStandardwithiouvilleansolutions.offollotheresultsScderivhr?ordingervequationrespfoctivr,Abstractthis.-Tconstructionotheconsidernstates-ofself-adjoin2ofdescribingStandardthe-phexistenceysicalansystemstateneartheitstationthethermaofltimesequilibriumtheatysicaltemper-(τ ) At t∈
τ : A7→τ (A), t∈ , A∈A.t t
H
A
A
L
wdellklungderen,QuaneratorstenGleicelektrokdynamikbf?rdaTheemperatureraturundNullDarstellunglieferteratorseineneinerHamilton-tszustandesOpveratorphH,N?hedertsdiebEnergieAnsatzvvonektoreTdieeilcfehenwb-escSelbstadjungiertheithreibt,eineswungelcUmhenmithePhotonenaliwinecthermischselwigewicrTkdarstellen,en.scImwirHeisenonbeineergbildtaistDiedieinZeitevdieoltutionmitdesStandardphDoktorarbysifolgendekbzw.aliscKhen-SystStandardemsdiedurchgewichhdief?rWirkung.eZust?ndeionne,relcEin-dasPysikarameter-GruppsceSystemSderDasdeshensysteme.heneilch-ThelterzurRempaufTeinezuMengeevhreibonfolgenObservdemavblenJaksicoppPillet,gegebDarstellungen:ongekzuoonstruieren.W?rmebadVeinnandieserher,denierend-MZust?nde,cZeitenndliwicewirdMathematikHilrdesbLiouville-OphriebIndieeschenen.RdiesertersuceitunerdenWirResultateZusammenfassungewiesen3hergeleitet:indieDarstellungonstuktionderDarstellungdesdieysikdeshenLiouville-Opf?r-Zeiten.ExistenzderGleicSchhr?dinger-GleicdieserDiese-stehLimestphimaliscZusammenhangSystemsmitgro?ederL?sungDanksagung4∗C
∗W
∗W
F [g ⊕g ] =F [g ]⊗F [g ]b 1 2 b 1 b 2
2 3F [L ( ,dμ)]b
concrete....13.2.2.....-Algebras......z......2.8.........dynamic...........2.1.2.7.6.Con.......Nonrelativistic.........Condition.............cond.on....18.2.3TheT.omita-Ttationsak2esaki-Theory..c.1.on.....eyl.......3.P........................................22.2.4.Dynamical-Systems2.7.4.t.t...............43.Isomorphism.......and.Theory.......F.Space.tro.ts.t...........Abstract........26.2.5.P.ert.urbatidelson55ofIn....-dynamical.systems........3.2.del.................3.3..................313.42.6.Ergo.dic.Prop.erties........61...............41.Se.Quan.i.a.i...............................2.7.5.Natural37.2.7.Innite.P.article.Space....Represen.States-Algebras,.13.Mathematical...........43.The.o.k447WductionAlgebraIntheRotenkt.........................2.7.7.eyl.in.F.c.Represen.a.i...................45.The39W2.7.1AlgebraSymmetrization............................48.Mo.in.QED.3.1.article-Photon.teraction........................39.2.7.2.F55oThecMok.Space................................58.Gibbs..................................40.2.7.360BosonicThermoFLimito.c.k-Space............................5.β

.A.Deriv.ation.for.the.concreteceMoRdel94atAnharmonicin09vEquilibriumerse.T.emp.erature.3.5..h.....T...89.Oscillator.....br64.4.Existence.of.Thermal.Equilibrium.States.69th4.1.The.Liouvillean.CONTENTS.6.......dditional.Theory.....Return.the.........5.2.1.an.um...........92.to...............Comparison.Liouvillean........69.4.298Equilibrium.States..............102.o.ofs.Op...........5.2.to.for.Harmonic.................92.Existen.of.Equili.i.State..71.4.3.The.Harmonic.Oscillator............5.2.2.eturn.Equilibrium.............................5.3.with.e.Approac..........81.5.Return.to.Thermal.Equilibr.ium5.487Oscillator5.1.A.Summary.o.f.Results.due.to.Arai................A.w.A.Pro.1.B.erator.115.n
Pn 1 2T = (p~ )jj=1 2mj
3p~ j mj j
~x V(x) =V(~x ,...,~x )j 1 n
n
X 1 2H =T +V(x) = (p~ ) +V(~x ,...,~x ).j 1 n
2mj
j=1
p~ ~xj j
H, p~ V(x)j
~ψ p~ := −ı∇ V(x)j xj
V(x) H
ψ
1,...,n t x ,...,x1 n
2−1