153 Pages
English
Gain access to the library to view online
Learn more

Catalytic methylenedianiline synthesis on porous solid acids [Elektronische Ressource] / Michael Salzinger

-

Gain access to the library to view online
Learn more
153 Pages
English

Description

TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Technische Chemie II Catalytic methylenedianiline synthesis on porous solid acids Michael Salzinger Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. Kai-Olaf Hinrichsen Prüfer der Dissertation: 1. Univ.-Prof. Dr. rer. techn. Johannes A. Lercher 2. apl. Prof. Dr. rer. nat. habil. Peter Härter Die Dissertation wurde am 25.08.2010 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 17.09.2010 angenommen. There is no sadder sight in the world than to see a beautiful theory killed by a brutal fact. Thomas Henry Huxley (1825-95), brit. Zoologe For my parents and always, for Sabine. Acknowledgements First of all I want to thank Professor Johannes A. Lercher for giving me the chance to do my PhD thesis in his group and providing me with such an interesting and challenging research topic.

Subjects

Informations

Published by
Published 01 January 2010
Reads 38
Language English
Document size 7 MB

Exrait



TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Technische Chemie II


Catalytic methylenedianiline synthesis
on porous solid acids

Michael Salzinger

Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.




Vorsitzender: Univ.-Prof. Dr.-Ing. Kai-Olaf Hinrichsen
Prüfer der Dissertation:
1. Univ.-Prof. Dr. rer. techn. Johannes A. Lercher

2. apl. Prof. Dr. rer. nat. habil. Peter Härter



Die Dissertation wurde am 25.08.2010 bei der Technischen Universität München
eingereicht und durch die Fakultät für Chemie am 17.09.2010 angenommen.




























There is no sadder sight in the world
than to see a beautiful theory killed by a brutal fact.

Thomas Henry Huxley (1825-95), brit. Zoologe















































For my parents
and always, for Sabine.

Acknowledgements

First of all I want to thank Professor Johannes A. Lercher for giving me the chance to
do my PhD thesis in his group and providing me with such an interesting and
challenging research topic. While leaving me on a long line and allowing me to progress
through the projects’ obstacles according to my own plans and judgment, our
discussions always offered fresh ideas, insights and new angles to tackle problems.
Thanks also to Xaver Hecht, for measuring N -physisorption and helping me to repair 2
my setups again and again, Andreas Marx for making my computer run, Martin
Neukamm for elemental analysis and Thomas Tafelmeier, Ulrike Ammari and Sabine
Martinetz of the microanalytical laboratory for CHN analysis. Helen Lemmermöhle,
Katharina Thies and Stefanie Maier must not be forgotten, because without them doing
all organisations, nothing here could go about its course at all!
Many students did a great job and contributed to the present work. I would like to point
out especially Matthias Fichtl, Jennifer Ludwig and Florian Hanus, who spent a lot of
time in my laboratory and proofreading this work. Thank you!
Special thanks to all dear colleagues, present and past, who were working alongside me
over these three years. While it would be impossible to mention everybody I want to
stress out several special people. First of all I want to mention Chang Uk Lee, whom I
met in our very first lecture at University and who is up until today one of my best
friends and also my best man! Regrettably, he is currently in South Korea, doing his
military service. I pray for his safe return and look forward to the day we meet again.
Thanks also to Sebastian Baer (a.k.a. McGyver) one of my dearest friends since my first
days at University, for providing distraction, T-shirts, cakes and many more useful
things. Sarah Maier and Daniela Hartmann have also endured five years of studying
alongside me and have furthermore decided to do their PhD thesis also at TC2. Thank
you for countless hours of laughing and talking during the last eight years. Without
Oliver Gobin and Tobias Förster to break the everyday routine in office 46303, three
years of PhD would have definitely been less fun. And without Stephan Reitmeiers’
constant urge to shut windows, all of us would have less to sweat (and laugh).
Last but not least I want to mention my parents Josef and Siglinde and my dear wife
Sabine and give them very special thanks for all the love and invaluable support they
gave me and, above all, for enduring me when I was in a bad temper, which might have
happened form time to time...
Abbreviations

Å Angström
AAS atom absorption spectroscopy
Al aluminium
BET Brunauer-Emmet-Teller
Ca calcium
CSTR continuous stirred tank reactor
CTMABr cetyltrimethylammoniumbromide
DFT density functional theory
DMSO demethylsulfoxide
equ. equivalent(s)
eV electronvolt
FID flame ionization detector
FTC framework type code
GC/MS gas chromatography – mass spectrometry
HMI hexamethyleneimine
HPLC high-pressure liquid chromatography
(k)J (kilo)joule
K kelvin
L liter
MALDI matrix-assisted laser desorption ionisation
MDA methylenedianiline
(m)mol (milli)mol
min minute
mL milliliter
mm millimeter
g microgram
m micrometer
Na sodium
OABA ortho-aminophenylaniline
Pa pascal
PABA para-aminophenylaniline
PFR plug flow reactor
Ph phenyl
pMDA poly-MDA
pPABA poly-PABA
ppm parts per million
rpm rounds per minute
τ residence time
TEM transmission electron microscopy
TEOS tetraethylorthosilicate
TMAOH tetramethylammoniumhydroxide
TOF time-of-flight
TOF turn over frequency
TPAOH tetrapropylammoniumhydroxide
TPD temperature programmed desorption
TUM Technische Universität München
wt % weight percent
XRD X-ray diffraction

TABLE OF CONTENTS

1 GENERAL INTRODUCTION…..…………………………………………...11
1.1 POLYURETHANES……………………………………………………….…..12
1.2 METHYLENEDIANILINE (MDA) PRODUCTION…………………………......3 3
1.3 REACTION MECHANISM – STATE OF THE ART……………………………….162
1.3.1 Non-catalytic condensation of aniline and formaldehyde to
N,N’-diphenylmethylenediamine (aminal)…………………………….. 7
1.3.2 Catalytic rearrangement of aminal to benzylanilines………………. 7
1.3.3 Acid catalyzed rearrangement of benzylamine-intermediates
into MDA…………………………………………………………………… 8
1.4 ALUMINOSILICATES AS SOLID ACID CATALYSTS…………………………… 10
1.4.1 Zeolites…………………………………………………………………… 10
20 1.4.2 Mesoporous Aluminosilicates………………………………………….
1.5 SCOPE OF THE THESIS.....................................................................................2. 8

2 REACTION NETWORK AND MECHANISM OF THE SYNTHESIS
OF METHYLENEDIANILINE OVER DEALUMINATED Y-TPYE
35 ZEOLITES………………………………………………………………...…..13
2.1 INTRODUCTION……………………………………………………….…….1336
2.2 METHODS…………..………………………………………………………2348
42 2.3 RESULTS…………….……………………………………………………...26
2.3.1 Catalyst characterization……………………………………..…… 42
2.3.2 Time concentration profiles……………………………………..…4 4
50 2.3.3 Temperature dependence…………………………………………..32
2.3.4 Reaction orders…………………………………………………………… 5.2
2.3.5 Influence of aminal to aniline ratio…………………………………….5. 2
2.4 DISCUSSION………………………………………………………………… 5 4
54 2.4.1 Reaction network and mechanism………………………………………
2.4.2 Simulation of the reaction network……………………………………..5 9
2.5 CONCLUSION…………………………………………………………………72

3 ON THE INFLUENCE OF PORE GEOMETRY AND ACIDITY ON
THE ACTIVITY OF PARENT AND MODIFIED ZEOLITES IN
THE SYNTHESIS OF METHYLENEDIANILINE …………….…...…35 75
3.1 INTRODUCTION…………….…………………………………………….357 6
3.2 METHODS……………………………………………………………….37 78
78 3.2.1 Materials…………………………………………………………….37
82 3.2.2 Characterization……………..…………………………………...45
3.2.3 Catalytic reaction..…….……………………………………….508 3
3.2.4 Modeling………...........................................................................52 84
85 3.3 RESULTS………..……………………………………………………….56
3.3.1 Catalyst characterization………………………..………………...568 5
3.3.2 Catalytic reaction…………………………………………………719 4
95 3.4 DISCUSSION……………………………………………………………..78
3.5 CONCLUSION……………………………………………………………… 1.0 3

4 INVESTIGATIONS ON THE DEACTIVATION OF ALUMINO-
SILICATE CATALYSTS DURING METHYLENEDIANLINE
108 SYNTHESIS….…………………………………………………………….78
4.1 INTRODUCTION…………..……………………………………………...831 09
113 4.2 METHODS………………………………………………………………..8
4.2.1 Materials…………………………………………………………………1 13
4.2.2 Characterization…………………………………………………………1 15
115 4.2.3 Chemical pulping of deactivated zeolite……………………………..
4.2.4 Catalytic reaction……………………………………………………. 116
4.2.5 Continuous lifetime testing setup……………………………………..1 18
120 4.3 RESULTS…………………………………………………………………..
120 4.3.1 Catalyst characterization …………………………………………..
4.3.2 Chemical pulping of deactivated zeolite…………………………… 124
125 4.3.3 Catalytic reaction………….………………………………………….
125 4.3.4 Continuous lifetime testing…..…..……………………………………..
4.4 DISCUSSION……………………………………………………………….1 30
4.5 CONCLUSION……………………………………………………………… 1 34

5 SUMMARY/ZUSAMMENFASSUNG……………………………………….. 137