Deposition and growth of various nanomaterials at nanostructured interfaces [Elektronische Ressource] / vorgelegt von Eva Bock

-

English
155 Pages
Read an excerpt
Gain access to the library to view online
Learn more

Description

INAUGURAL-DISSERTATIONzurErlangungderDoktorwur¨ dederNaturwissenschaftlich-MathematischenGesamtfakultat¨ derRuprecht-Karls-Universitat¨HeidelbergvorgelegtvonDipl.-Chem. EvaBockausEdenkobenTagdermundlichen¨ Prufung:¨ 17. Oktober2008DEPOSITION AND GROWTH OFVARIOUSNANOMATERIALS ATNANOSTRUCTUREDINTERFACESGutachter:Prof. Dr. JoachimP.Spatz PDDr. ReinerDahintBiophysikalische AngewandteChemie PhysikalischeChemieUniversitat¨ Heidelberg Universitat¨ HeidelbergContentsContents ISummary 1Zusammenfassung 3I Introduction 51 Introduction 61.1 AssemblyofInorganicNanocrystals . . . . . . . . . . . . . . . . 71.2 NanostructuredSubstrates . . . . . . . . . . . . . . . . . . . . . . 101.2.1 BlockCopolymerMicellarNanolithography . . . . . . . 111.3 NanoparticlesandMesoscopicPhenomena . . . . . . . . . . . . 141.3.1 PreparationofNanoparticles . . . . . . . . . . . . . . . . 171.3.2 CrystalStructureandShape . . . . . . . . . . . . . . . . . 191.3.3 Heterostructures . . . . . . . . . . . . . . . . . . . . . . . 201.3.4 CdSeRods . . . . . . . . . . . . . . . . . . . . . . . . . . . 211.4 MagneticNCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221.4.1 Coparticles . . . . . . . . . . . . . . . . . . . . . . . . . . 221.4.2 CoPt Nanocytals . . . . . . . . . . . . . . . . . . . . . . . 2331.5 Biomolecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241.5.1 DesoxyriboseNucleicAcid(DNA) . . . . . . . . . . . . . 241.5.

Subjects

Informations

Published by
Published 01 January 2009
Reads 12
Language English
Document size 8 MB
Report a problem

INAUGURAL-DISSERTATION
zurErlangungderDoktorwur¨ deder
Naturwissenschaftlich-Mathematischen
Gesamtfakultat¨ derRuprecht-Karls-Universitat¨
Heidelberg
vorgelegtvon
Dipl.-Chem. EvaBock
ausEdenkoben
Tagdermundlichen¨ Prufung:¨ 17. Oktober2008DEPOSITION AND GROWTH OF
VARIOUSNANOMATERIALS AT
NANOSTRUCTURED
INTERFACES
Gutachter:
Prof. Dr. JoachimP.Spatz PDDr. ReinerDahint
Biophysikalische Angewandte
Chemie PhysikalischeChemie
Universitat¨ Heidelberg Universitat¨ HeidelbergContents
Contents I
Summary 1
Zusammenfassung 3
I Introduction 5
1 Introduction 6
1.1 AssemblyofInorganicNanocrystals . . . . . . . . . . . . . . . . 7
1.2 NanostructuredSubstrates . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 BlockCopolymerMicellarNanolithography . . . . . . . 11
1.3 NanoparticlesandMesoscopicPhenomena . . . . . . . . . . . . 14
1.3.1 PreparationofNanoparticles . . . . . . . . . . . . . . . . 17
1.3.2 CrystalStructureandShape . . . . . . . . . . . . . . . . . 19
1.3.3 Heterostructures . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.4 CdSeRods . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 MagneticNCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.1 Coparticles . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.2 CoPt Nanocytals . . . . . . . . . . . . . . . . . . . . . . . 233
1.5 Biomolecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.1 DesoxyriboseNucleicAcid(DNA) . . . . . . . . . . . . . 24
1.5.2 ViralNanoparticles(VNPs) . . . . . . . . . . . . . . . . . 26
II Materials and Methods 27
2 Materials and Methods 28
2.1 AnalysisMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.1 ElectronMicroscopy . . . . . . . . . . . . . . . . . . . . . 28
2.1.2 OrderParameter . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.3 AtomicForceMicroscopy . . . . . . . . . . . . . . . . . . 30
2.1.4 X-RayPhotoelectronSpectroscopy(XPS) . . . . . . . . . 31
2.1.5 Quartz Crystal Microbalance with Dissipation Monitor-
ing(QCM-D) . . . . . . . . . . . . . . . . . . . . . . . . . 32CONTENTS
2.1.6 OpticalSpectroscopy/Microscopy . . . . . . . . . . . . 32
2.2 Chemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 ExperimentalSection . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 MicellarSolution . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 SubstratePreparation . . . . . . . . . . . . . . . . . . . . 35
2.3.3 GrowthofgoldTipsonCdSerods . . . . . . . . . . . . . 36
2.3.4 PEGPassivation . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.5 ThiolFunctionalization . . . . . . . . . . . . . . . . . . . 37
2.3.6 ImmobilizationoftheNCs . . . . . . . . . . . . . . . . . 37
2.3.7 DNAasLinker . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.8 MicellarNanolithography . . . . . . . . . . . . . . . . . . 40
2.3.9 SynthesisofBi[N(SiMe ) ] . . . . . . . . . . . . . . . . . 413 2 3
2.3.10 Au@BiCore-ShellParticles . . . . . . . . . . . . . . . . . 41
2.3.11 Solution-Liquid-SolidGrowthofCdSeRodsandWires . 42
2.3.12GrowthofCoRods . . . . . . . . . 42
2.3.13 ModificationofStreptavidinwithTraut’sReagent . . . . 43
2.3.14 LayersofViralNanoparticles . . . . . . . . . . . . . . . . 44
III Results and Discussion 45
3 Metallic Nanoparticle Arrays 46
3.1 InfluenceofPolarSolvents . . . . . . . . . . . . . . . . . . . . . . 48
3.2 TuningtheInterparticleDistance . . . . . . . . . . . . . . . . . . 51
3.2.1 MolecularWeightoftheDiblockCopolymer . . . . . . . 52
3.3 InfluenceoftheSolventandVapor . . . . . . . . . . . . . . . . . 54
3.4 SpinCoatingofPolymerSolutionsonStructuredSubstrates . . 56
4 Immobilization of Inorganic Nanocrystals 61
4.1 EmployedNanocrystals . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 DithiolMoleculesasLinker . . . . . . . . . . . . . . . . . . . . . 63
4.2.1 AlkaneDithiols . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 HeterodimersandDumbbells . . . . . . . . . . . . . . . . 65
4.2.3 CobaltMatchsticks . . . . . . . . . . . . . . . . . . . . . . 67
4.3 DNAasLinker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.1 FunctionalizationofNCswithDNA . . . . . . . . . . . . 72
IICONTENTS
4.3.2 FunctionalizationofNanoPatternedSurfaceswithDNA 74
4.3.3 Hybridization . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.4 BridgingofGoldDotswithSingleStrandedDNA . . . . 78
4.4 MicellarNanolithographywithSemiconductingNanocrystals . 81
5 Growth of Particles on Substrates 86
5.1 GrowthofCdSe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.1.1 Au@BiCoreShellParticles . . . . . . . . . . . . . . . . . 87
5.1.2 CdSeRodsandWires . . . . . . . . . . . . . . . . . . . . 91
5.2 GrowthofCoonPtNanostructuredSubstrates . . . . . . . . . . 95
6 Viral Nanoparticles as Building Blocks 97
6.1 CPMVLayersonSupportedLipidBilayers . . . . . . . . . . . . 97
6.2 CPMVLayeronGold . . . . . . . . . . . . . . . . . . . . . . . . . 101
IV Outlook 109
7 Outlook 110
References 113
List of Figures 129
List of Tables 141
IIISummary
Summary
The goal of this work is the deposition and growth of various nanoobjects on
patterned surfaces. For this purpose, patterned surfaces function as a chem-
ical template to direct the location and shape of the added nanoobjects. In
particular, colloidal nanoparticles, viral particles and inorganic salts are used
toassemblesmallstructuresalonglargeareasofchemicalsurfacepatterns.
The substrates for these assays are based on glass or silicon, which have
been decorated with gold or platinum nanoparticles. These nanostructured
substrates were obtained by block copolymer micelle nanolithography. The
technologyhasbeensubstantiallyimprovedforapplicationtolarge-scalesur-
faceareasandoptimumpatternquality. Here,theinfluenceoftrappedsolvent
vapor above the dipping solution on the thickness of the adsorbed polymer
film was investigated. A higher amount of trapped vapor results in an in-
crease of the lateral distance of the nanoparticles on the surface and a more
reproduciblepatternformation,whichwasshownbySEManalysis. Nanopat-
terned surfaces were then used as a chemical mosaic platform for the deposi-
tionandgrowthofdifferentnanoobjects.
CdSe-Au dumbbells, CoPt -Au heterodimers and Co-Au matchsticks were3
attached to gold nanoparticles which were deposited by block copolymer mi-
celle nanolithography via a dithiol linker. The resulting patterns show a ran-
dom orientation of the nanocrystals. The magnetic Co-Au matchsticks were
additionally aligned in a magnetic field, resulting in an ordered surface. Fur-
thermore, CdSe-Au dumbbells were immobilized by DNA assembly. Here,
hybridization allowed for a controlled and reversible attachment of the nano-
crystalsonthesurface.
Direct assembly of spherical CdSe nanocrystals on a non-patterned surface
was realized by block copolymer micelle nanolithography. Hydrophilic lig-
andsenabletheinteractionbetweentheasformedinorganicsol-
vents and the polar core of block copolymer micelles. Guided by the block
copolymermicellarcoretheCdSeparticleswerehexagonallyarrangedonthe
substrate, with 3 or 4 particles being located in one micelle. The number of
CdSe particles per micelle was investigated by electron and fluorescence mi-
croscopy and was found to be independent from the size of the polymer. In a
solution-liquid-solid approach, CdSe rods and wires as well as Co rods were
grown on the nanopatterned substrates. For the growth of the CdSe rods and
wires, Au@Bi core shell particles on the surface were used as a catalyst. In-
terestingly,theAu@Bicoreshellparticlesremainedonthesubstratewhilethe
tipsofthewireswerecoveredbythegrowthofbismuth.
Layers of biotin modified cowpea mosaic viruses are formed on a biotin-
dopedlipidbilayeronahydrophilicsiliconoxidesurface,connectedbystrep-
tavidin. In quartz crystal microbalance studies, different biotin modifications
werecompared. Theresultingfilmsshoweddifferencesintheirroughnessand
density. Thiol-modifiedstreptavidinenabledtheattachmentofthevirusnano-
particlestogold,wheretheresultinglayerhasthesamedensityasonthelipid
1Summary
bilayer.
In summary, nanostructured substrates are a versatile platform for the as-
sembly of organic and inorganic nanoparticles as well as growth seeds for in-
organicmaterial. Severaldifferentmethodstocontroltheassemblyofparticles
onasolidsubstrateweresuccessfullyinvestigated,demonstratingtheirpoten-
tialforfurtherapplicationinnanotechnology.
2