Development and operation of a perfusion bioreactor for the cultivation of mammalian cells inside a sponge-like ceramic matrix [Elektronische Ressource] / vorgelegt von Vicky Goralczyk

-

English
156 Pages
Read an excerpt
Gain access to the library to view online
Learn more

Informations

Published by
Published 01 January 2010
Reads 15
Language English
Document size 20 MB
Report a problem

Development and operation of a
perfusion bioreactor for the cultivation of
mammalian cells inside a sponge-like ceramic
matrix
vorgelegt von
Dipl.-Ing.
Vicky Goralczyk
aus Berlin
Von der Fakultät III - Prozesswissenschaften
der Technischen Universität Berlin
zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften
Dr.-Ing.
genehmigte Dissertation
Promotionsausschuss:
Vorsitzender: Prof.Dr.rer.nat.Lothar W.Kroh
Gutachter: Prof.Dr.-Ing.habil.Rudibert King
Gutachter: Prof.Dr.-Ing.Udo Reichl
Gutachter: Prof.Dr.rer.nat.Helmut Schubert
Tag der wissenschaftlichen Aussprache: 13.Juli 2010
Berlin 2010
D83i Contents
Contents
1 Abstract 1
2 Introduction 5
2.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Ceramics for cell cultivation . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Cell cultivation modes . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Inoculation modes . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Perfusion dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Goals of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Materials and methods 19
3.1 Preparation of alumina ceramics for cell culture . . . . . . . . . . . . . . 19
3.2 Reactor device for cell cultivation on alumina foams . . . . . . . . . . . . 20
3.2.1 Tubular design for series connection of ceramics . . . . . . . . . . 21
3.2.2 Revolver design for parallel of ceramics . . . . . . . . . 22
3.2.3 Small block design for single foam analysis . . . . . . . . . . . . . 24
3.3 Inoculation procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Static inoculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Dynamic inoculation by stirring or agitation . . . . . . . . . . . . 26
3.3.3 ino by convectional forces . . . . . . . . . . . . . 26
3.4 Cultivation of cells on ceramics . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Perfusion cultivation inside the reactor device . . . . . . . . . . . 27
3.4.2 Static cultivation of cells outside the reactor device . . . . . . . . 29
3.4.3 Cultivation of cells by medium convection outside the reactor device 29
3.5 Cell lines and origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6.1 MicroscopicevaluationofcellvitalitybydyeingaccordingtoFDA/EB
protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Contents ii
3.6.2 Microscopic evaluation of cell distribution by dyeing according to
hematoxylin/eosin protocol . . . . . . . . . . . . . . . . . . . . . 32
3.6.3 Scanning electron microscopy of ceramic surface and cells on ce-
ramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.4 Metabolic evaluation of glucose consumption and lactate formation 33
3.6.5 Reduction of resazurin . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.6 Carrier hot gas extraction . . . . . . . . . . . . . . . . . . . . . . 35
4 Reactor characterization 37
4.1 Ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.1 Porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Flow resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Characterization of flow inside the reactor . . . . . . . . . . . . . . . . . 39
5 AnalysisofCHO-K1 byresazurinassayandcarboncontentdetermination. 43
5.1 Reduction of resazurin by CHO-K1 . . . . . . . . . . . . . . . . . . . . . 43
5.1.1 Determination of rate of reduction . . . . . . . . . . . . . . . . . 43
5.1.2 Modeling resazurin reduction . . . . . . . . . . . . . . . . . . . . 46
5.1.3 Adaptationoftheresazurinreductionmodeltodescribebioreactor
performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Carbon content of cells cultivated on ceramics . . . . . . . . . . . . . . . 54
5.2.1 Carbon content of pure cells . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 Carbon content of cells on foams . . . . . . . . . . . . . . . . . . 55
6 Influence of mode of inoculation on cellular growth and distribution 59
6.1 Static inoculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1.1 Static inoculation on foams in culture plates . . . . . . . . . . . . 59
6.1.2 Static ino into the tubular reactor . . . . . . . . . . . . . 60
6.1.3 Static inoculation into revolver reactors . . . . . . . . . . . . . . . 61
6.1.4 Static ino in ceramics with flow channels . . . . . . . . . . 65
6.1.5 Reproducible cultivation following static inoculation into revolver
reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2 Dynamic inoculation by agitation . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Oscillatory perfusion inoculation . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.1 Influence of module orientation, flow velocity, initial cell count on
cell distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75iii Contents
6.3.2 Introduction of more porous ceramics and augmentation of flow
velocity during cultivation . . . . . . . . . . . . . . . . . . . . . . 76
6.3.3 Reduction of foam volume by reducing cylinder height . . . . . . 81
7 Reproducibility of the chosen operation methods 85
7.1 Standard foams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 Foams with larger pores . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8 Long-term cultivation 97
9 Applicability of the reactor system for other cell types 103
9.1 Human lung carcinoma cells A549 . . . . . . . . . . . . . . . . . . . . . . 103
9.2 primary fibroblasts . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.3 Madin-Darby canine kidney cells (MDCK) . . . . . . . . . . . . . . . . . 106
10 Conclusion 111
Appendix 117
Literature 130v Abbreviatons and Symbols
Abbreviations
Al O aluminium oxide2 3
CO carbon dioxide2
CHGE carrier hot gas extraction
DNA desoxyribonucleic acid
EB ethidium bromide
ECM extracellular matrix
FBS fetal bovine serum
FDA fluorescein diacetate
HA hydroxy-apatite
IFS Interdisciplinary Research Priority Program
PBS++ phosphate buffered saline containing magnesium and calcium
PFR plug flow reactor
ppi pores per inch
SD standard deviation
SEM scanning electron microscopy
STR stirred tank reactor
TCP tri-calcium phosphate
TU Berlin Technische Universität Berlinvii Abbreviatons and Symbols
Symbols
p pressure drop [Pa]
_V volumetric flow [ml/min]
coefficient of viscosity [mPas]
porosity
density [g/ml]
standard deviation
normalized time
2A area [m ]
Bo Bodenstein number
c concentration [g/l]
2D axial coefficient of dispersion [m /s]ax
E extinction
F normalized extinction
H height [m]
2K Darcy’s constant [m ]d
L length [m]
m mass [g]
n quantityAbbreviatons and Symbols viii
p percentage
2R coefficient of determination
t time [s]
V volume [ml]
x normalized concentration