Development of high speed integrated circuit for very high resolution timing measurements [Elektronische Ressource] / von Christian Mester. Universität Bonn, Physikalisches Institut

Development of high speed integrated circuit for very high resolution timing measurements [Elektronische Ressource] / von Christian Mester. Universität Bonn, Physikalisches Institut

-

English
150 Pages
Read
Download
Downloading requires you to have access to the YouScribe library
Learn all about the services we offer

Description

..UNIVERSITAT BONNPhysikalisches InstitutDevelopment of high speed integrated circuit for very highresolution timing measurementsvonChristian MesterAmulti-channelhigh-precisionlow-powertime-to-digitalconverterappli-cation specific integrated circuit for high energy physics applications hasbeen designed and implemented in a 130nm CMOS process. To reach atarget resolution of 24.4ps, a novel delay element has been conceived.This nominal resolution has been experimentally verified with a prototy-pe,withaminimumresolutionof19ps.Tofurtherimprovetheresolution,a new interpolation scheme has been described.The ASIC has been designed to use a reference clock with the LHCbunch crossing frequency of 40MHz and generate all required timingsignalsinternally,toeasetousewithintheframeworkofanLHCupgrade.Special care has been taken to minimise the power consumption.Post address: BONN-IR-2009-09Nussallee 12 Bonn University53115 Bonn October 2009Germany ISSN-0172-8741..UNIVERSITAT BONNPhysikalisches InstitutDevelopment of high speed integrated circuit for very highresolution timing measurementsvonChristian MesterDieser Forschungsbericht wurde als Dissertation von der Mathematisch - NaturwissenschaftlichenFakultat der Universitat Bonn angenommen.¨ ¨Angenommen am: 22. Oktober 2009Referent: Dr. Paulo Rodrigues S. MoreiraKorreferent: Prof. Dr.

Subjects

Informations

Published by
Published 01 January 2009
Reads 6
Language English
Report a problem

..
UNIVERSITAT BONN
Physikalisches Institut
Development of high speed integrated circuit for very high
resolution timing measurements
von
Christian Mester
Amulti-channelhigh-precisionlow-powertime-to-digitalconverterappli-
cation specific integrated circuit for high energy physics applications has
been designed and implemented in a 130nm CMOS process. To reach a
target resolution of 24.4ps, a novel delay element has been conceived.
This nominal resolution has been experimentally verified with a prototy-
pe,withaminimumresolutionof19ps.Tofurtherimprovetheresolution,
a new interpolation scheme has been described.
The ASIC has been designed to use a reference clock with the LHC
bunch crossing frequency of 40MHz and generate all required timing
signalsinternally,toeasetousewithintheframeworkofanLHCupgrade.
Special care has been taken to minimise the power consumption.
Post address: BONN-IR-2009-09
Nussallee 12 Bonn University
53115 Bonn October 2009
Germany ISSN-0172-8741..
UNIVERSITAT BONN
Physikalisches Institut
Development of high speed integrated circuit for very high
resolution timing measurements
von
Christian Mester
Dieser Forschungsbericht wurde als Dissertation von der Mathematisch - Naturwissenschaftlichen
Fakultat der Universitat Bonn angenommen.¨ ¨
Angenommen am: 22. Oktober 2009
Referent: Dr. Paulo Rodrigues S. Moreira
Korreferent: Prof. Dr. Norbert WermesDevelopment of
high speed integrated circuit for
very high resolution timing measurements
Disseration
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultät
der
Rheinischen Friedrich-Wilhelms-Universität Bonn
vorgelegt von
Christian Mester
aus
Köln
Bonn 2009Contents
1 Introduction 1
1.1 Structure of the thesis .......................... 1
2 Time Measurements in HEP Experiments 5
2.1 Introduction ............................... 5
2.2 Case Study: ALICE Time of Flight Detector .............. 5
3 Basic Principles of a TDC 11
3.1 Ideal TDC ................................ 13
3.2 Performance Metrics for TDCs ..................... 14
4 TDC Data Flow Architecture 21
4.1 Specifications .............................. 21
4.2 Clock driven architecture ........................ 22
4.3 Data driven......................... 23
4.4 Choice of Data Flow Architecture ................... 25
5 Time Base Architectures Overview 27
5.1 Time Base Architectures 27
5.1.1 Counter based Architecture 28
5.1.2 Delay line based ................. 29
5.1.3 Delay Locked Loop based Architecture ............ 32
5.1.4 Phase Locked Loop based 33
5.1.5 Array of DLLs based Architecture ............... 34
5.2 Fine Time Interpolation Techniques .................. 36
5.2.1 Dual-Slope Analogue Time Expansion............. 37
iContents
5.2.2 Vernier Techniques ....................... 39
5.2.3 Passive LC lines or RC lines .................. 41
5.2.4 DLL adjusted delay lines.................... 42
5.3 Choice of Time Base Architecture ................... 44
6 TDC130 Target Chip Architecture 47
6.1 Data Flow and Time Base Architecture................. 47
6.2 Channel Macro ............................. 47
6.3 Level-1 Buffer Organisation ...................... 49
6.4 Trigger Mechanism ........................... 51
6.5 Channel Merging ............................ 53
6.6 Readout ................................. 54
7 TDC130-0820 Prototype Chip Implementation 55
7.1 Architecture ............................... 55
7.2 DLL Implementation .......................... 55
7.2.1 Delay Element ......................... 56
7.2.2 Phase Detector 61
7.2.3 Loop Filter ........................... 64
7.2.4 Choice of Phase Detector and Loop Filter ........... 68
7.2.5 Transfer function ........................ 69
7.2.6 Limitations and Sources of Errors, Jitter ............ 70
7.2.7 Start-up Procedure ....................... 71
7.3 PLL Implementation .......................... 73
7.3.1 Voltage Controlled Oscillator ................. 73
7.3.2 Phase Detector ......................... 75
7.3.3 Loop Filter ........................... 78
7.3.4 Choice of Phase Detector and Loop Filter ........... 83
7.3.5 Transfer function ........................ 84
7.3.6 Start-up Procedure ....................... 87
7.4 Hit Registers .............................. 87
7.4.1 Differential vs. Single-Ended Hit Registers .......... 88
7.5 Hit Register Driving Circuitry ..................... 90
iiContents
7.6 Sources of Errors ............................ 91
7.6.1 Slew Rate 91
7.6.2 Noise on Control Voltages ................... 92
7.6.3 Power Supply and Ground Variations ............. 93
7.6.4 Thermal Noise ......................... 95
7.6.5 Flicker Noise .......................... 96
7.6.6 Shot noise 97
7.7 Readout and Configuration ....................... 97
7.7.1 Readout Shift Register ..................... 97
7.7.2 Configuration Shift Register .................. 98
8 Experimental Results 101
8.1 PLL Characterisation .......................... 101
8.1.1 Locking Range ......................... 101
8.1.2 Jitter .............................. 101
8.2 DLL Characterisation 102
8.2.1 DLL locking range ....................... 102
8.2.2 Linearity ............................ 103
8.2.3 Jitter 107
8.3 Power dissipation 109
9 Summary and Outlook 111
A Calculations 113
A.1 RMS and Standard Deviation of LSB.................. 113
B Alternative Implementations 115
B.1 DLL Phase Detector: XOR ....................... 115
B.2 DLL Loop Filter: RC Filter and Amplifier ............... 117
B.3 PLL Phase Detector: Analogue Multiplier 118
B.4 PLL Loop Filter: Passive RRC filter .................. 121
List of Symbols 123
iiiContents
List of Abbreviations 125
Bibliography 127
List of Figures 133
List of Tables 137
iv