Dust and gas in protoplanetary discs [Elektronische Ressource] / von Dmitry Semenov
137 Pages
English

Dust and gas in protoplanetary discs [Elektronische Ressource] / von Dmitry Semenov

Downloading requires you to have access to the YouScribe library
Learn all about the services we offer

Description

Dust and Gas in Protoplanetary DiscsDissertationzur Erlangung des akademischen Gradesdoctor rerum naturalium (Dr. rer. nat.)vorgelegt dem Rat der Physikalisch Astronomischen Fakultat¨der Friedrich Schiller Universit at¨ Jenavon Diplom Astronom Dmitry Semenovgeboren am 20 Februar 1978 in Sankt Petersburg (Rußland)Gutachter1. Prof. Dr. Thomas Henning (Jena/Heidelberg)2. Prof. Dr. Tom Millar (Manchester, UK)3. Prof. Dr. Ewine van Dishoeck (Leiden, NL)Tag des Rigorosums: 2005Tag der o¨entlichen Verteidigung: 2005”Do not keep saying to yourself, if you can possibly avoid it, ’But how can it be like that?’ becauseyou will get ’down the drain’ into a blind alley from which nobody has yet escaped. Nobody knowshow it can be like that.”Richard Feynman”Astronomy”, Alain of Lille (XII century)4Contents1 Introduction 12 Opacities for protoplanetary discs 32.1 A link between disc hydro models and opacities . . . . . . . . . . . . . . . . . . . . 32.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2.1 Dust opacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2.2 Gas opacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.2.3 Opacity table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.3 Computed monochromatic and mean opacities . . . . . . . . . . . . . . . . . . . . . 142.3.1 Opacities and dust models . . . . . . . . . . . . . . . . . .

Subjects

Informations

Published by
Published 01 January 2005
Reads 32
Language English
Document size 2 MB

Dust and Gas in Protoplanetary Discs
Dissertation
zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)
vorgelegt dem Rat der Physikalisch Astronomischen Fakultat¨
der Friedrich Schiller Universit at¨ Jena
von Diplom Astronom Dmitry Semenov
geboren am 20 Februar 1978 in Sankt Petersburg (Rußland)Gutachter
1. Prof. Dr. Thomas Henning (Jena/Heidelberg)
2. Prof. Dr. Tom Millar (Manchester, UK)
3. Prof. Dr. Ewine van Dishoeck (Leiden, NL)
Tag des Rigorosums: 2005
Tag der o¨entlichen Verteidigung: 2005”Do not keep saying to yourself, if you can possibly avoid it, ’But how can it be like that?’ because
you will get ’down the drain’ into a blind alley from which nobody has yet escaped. Nobody knows
how it can be like that.”
Richard Feynman
”Astronomy”, Alain of Lille (XII century)4Contents
1 Introduction 1
2 Opacities for protoplanetary discs 3
2.1 A link between disc hydro models and opacities . . . . . . . . . . . . . . . . . . . . 3
2.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Dust opacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Gas opacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Opacity table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Computed monochromatic and mean opacities . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Opacities and dust models . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Comparison to other studies . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Opacities and disc structure . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Chemical evolution of protoplanetary discs 23
3.1 Gas phase reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 Bond formation processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Ionisation and bond destruction processes . . . . . . . . . . . . . . . . . . . 26
3.1.3 Bond rearrangement processes . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Gas grain interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Accretion and sticking on dust grains . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Desorption processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Grain charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Surface reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Deuterium fractionation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Initial conditions for chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Chemical modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4 Reduction of chemical networks 39
4.1 Need for the reduction of chemical networks . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Reduction method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Ionisation state of a protoplanetary disc . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Importance of the ionisation fraction for disc evolution . . . . . . . . . . . . 41
4.3.2 Disc model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.3 Chemical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Column densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
iii CONTENTS
5 Millimetre observations and modelling of AB Aur 59
5.1 Why AB Aur? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Observations of AB Aur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.1 IRAM 30 m data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 Plateau de Bure interferometric data . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Model of the AB Aur system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.1 Disc model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 Envelope model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.3 Chemical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 2D line radiative transfer calculations . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.1 Calculated excitation temperatures . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Results of the line radiative transfer modelling . . . . . . . . . . . . . . . . . . . . . 76
+5.5.1 Interferometric HCO (1 0) map . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5.2 Single dish data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.3 Evolutionary status of the AB Aur system . . . . . . . . . . . . . . . . . . . 88
5.6 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6 Conclusions and prospects for the future 93
7 Zusammenfassung 95
A Scheme to compute the optical constants of aggregate particles i
B Surface species and reactions adopted in the disc chemical model v
C Acknowledgements xi
D Cirriculum vitae xiiiList of Figures
2.1 Topology of aggregate, composite, and multishell particles . . . . . . . . . . . . . . 9
2.2 Monochromatic and Rosseland mean dust opacities calculated for two silicate models 13
2.3 Calculated Rosseland and Planck mean are compared with other studies . . 17
2.4 Thermal disc structure derived with two dierent opacity models . . . . . . . . . . . 19
2.5 Midplane temperature of the disc obtained with the same opacity models . . . . . . . 19
3.1 Percentage agreement between calculated and observed gas phase abundances. . . . 36
3.2 The computational time needed to simulate the chemical evolution in a disc location
with chemical networks of various sizes. . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Three layers of a disc with dierent sets of chemical processes responsible for the
fractional ionisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Fractional as a function of height above the disc plane . . . . . . . . . . . 43
4.3 Evolution of the fractional ionisation in the intermediate layer at R = 3 AU . . . . . . 48
4.4 Main routes governing evolution of long carbon chains at R = 3 AU . . . . . . . . . 49
4.5 Evolution of the fractional ionisation in the surface layer at R = 1 AU. . . . . . . . . 50
4.6 Sizes of the reduced networks governing the disc fractional ionisation . . . . . . . . 56
4.7 Magnetic Reynolds numbers in the disc computed for t = 1 Myr. . . . . . . . . . . . 57
4.8 Comparison of the equilibrium and time dependent fractional ionisations att = 1 Myr 58
5.1 Single dish emission lines observed toward AB Aur with the IRAM 30 m antenna. . 62
+5.2 Velocity map of the AB Aur disc observed with the PbBI in HCO (1 0) . . . . . . . 64
5.3 Scheme of the AB Aur system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 The thermal and density structure of the disc model . . . . . . . . . . . . . . . . . . 67
5.5 Calculated column densities in the disc and envelope. . . . . . . . . . . . . . . . . . 71
+5.6 excitation temperatures in the disc for CO(2 1), CS(2 1), HCO (1 0), and
+HCO (3 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.7 Algorithm of the applied modelling approach . . . . . . . . . . . . . . . . . . . . . 77
+5.8 Comparison of the synthetic and observed HCO (1 0) interferometric maps . . . . . 78
+5.9 of the normalised single dish and interferometric HCO (1 0) spectra . . 79
5.10 Determination of the disc inclination angle. . . . . . . . . . . . . . . . . . . . . . . 80
5.11 of the disc positional angle. . . . . . . . . . . . . . . . . . . . . . . . 81
5.12 Observed and synthetic single dish CO(2 1) spectra for three envelope models. . . . 84
5.13ed and for three physical . . . . 84
+ + 185.14 Comparison of the observed and synthetic single dish HCO (1 0), HCO (3 2), C O(2
1), and CS(2 1) spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
iiiiv LIST OF FIGURESList of Tables
2.1 Mass fractions f and densities of dust constituents in the opacity model . . . . . . 7j j
10 32.2 Dust composition as a function of temperature ( 10 g cm ) . . . . . . . . . . 8
3.1 Types of chemical reactions in space . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Cosmic elemental abundances in respect to hydrogen . . . . . . . . . . . . . . . . . 36
4.1 Dominant ions in the midplane, intermediate layer, and surface layer at t = 1 Myr . . 43
4.2 Physical conditions in the midplane . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Reduced network for dark, hot chemistry in the disc midplane . . . . . . . . . . . . 45
4.4 network for dark, cold in the midplane . . . . . . . . . . . . . . 46
4.5 Physical conditions in the intermediate layer . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Physical in the surface layer . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Reduced network for X ray dominated chemistry in the surface layer . . . . . . . . . 51
4.8 network for UV dominated in the surface layer . . . . . . . . . . 51
4.9 The SIREN chemical network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.10 Chemical models of protoplanetary discs . . . . . . . . . . . . . . . . . . . . . . . . 53
24.11 The observed and calculated column densities (cm ) for r = 370 AU at t = 1 Myr . . 54
5.1 Parameters of the detected single dish emission lines . . . . . . . . . . . . . . . . . 63
5.2 P of the central star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Parameters of the best fit disc model . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 P of the envelope model . . . . . . . . . . . . . . . . . . . . . . . 70
5.5 Parameters of the 2D LRT calculations . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.6 Disc mass as a function of model parameters . . . . . . . . . . . . . . . . . . . . . . 83
5.7 Comparison of the AB Aur envelope models . . . . . . . . . . . . . . . . . . . . . . 87
A.1 Fit coecients for the filling factors and percolation strengths of aggregates . . . . . iii
B.1 Desorption energies of surface species . . . . . . . . . . . . . . . . . . . . . . . . . v
B.2 Set of the adopted surface reactions . . . . . . . . . . . . . . . . . . . . . . . . . . vi
vvi LIST OF TABLES