Read anywhere, anytime
Lilija Miller - technische_universitat_berlin
Description
Subjects
Informations
Published by | technische_universitat_berlin |
Published | 01 January 2011 |
Reads | 25 |
Language | English |
Document size | 8 MB |
Exrait
Expression Libraries as Tools for the
Development of Subunit Vaccines and Novel
Detection Molecules for Orthopoxviruses
vorgelegt von
Diplom‐Ingenieurin
Lilija Miller
aus Berlin
Von der Fakultät III – Prozesswissenschaften
der Technischen Universität Berlin
zur Erlangung des akademischen Grades
Doktorin der Ingenieurwissenschaften
‐Dr.‐Ing.‐
genehmigte Dissertation
Promotionsausschuss:
Vorsitzender: Prof. Dr. L.‐A. Garbe
Berichter: Prof. Dr. R. Lauster PD Dr. A. Nitsche
Berichter: Prof. Dr. J. Kurreck
Tag der wissenschaftlichen Aussprache: 02. Dezember 2011
Berlin 2011
D83
“You can accurately judge the research of others only after
you’ve done your own and can understand the messy reality
behind what is so smoothly and confidently presented in your
textbooks or by experts on TV.” [1]
‐ I ‐
To my parents, my sister and my other half
‐ II ‐
Acknowledgments
As with all projects in life, this one wouldn’t have been possible to complete without
the help of many persons, including my dear colleagues but also friends and family. It
is thus highly likely that I won’t be able to acknowledge every single contribution by
name. Therefore, in order to do justice, I would first like to thank everyone who helped
me through this demanding but interesting time, independent of the kind of support!
I am grateful to Andreas Nitsche for giving me the opportunity to do my PhD project
and for continuously providing motivation and support. Sincere thanks to my
colleague, my best friend, and my fellow in misery Daniel Stern! Thank you for the
innumerable, valuable scientific discussions, for frequent encouragement and for
always having a sympathetic ear. Without you the time would have been much harder!
Further, I’d like to thank all members of the ZBS1 group for the friendly atmosphere,
company during lunch, and the badminton tournaments.
A great contribution to this thesis was done by the students I supervised during my
PhD project. Lisa Schlicher, Isabel Choschzick, and Christoph Hapke contributed to the
“Expression library project” during their internships. Marco Richter and Christoph
Hapke further contributed to this project by completing their master’s thesis or
bachelor’s thesis, respectively. Johannes von Recum contributed to the “Phage Display
project” within the scope of his master’s thesis. I am thankful to Janine Michel, who
helped me with phage display selections and subsequent peptide characterization.
Wojtek P. Dabrowski contributed to the same project by programming the “Library
Insert Finder” software and thus considerably simplified the search for the random
peptide sequences.
I am also grateful to the staff of the photo laboratory for taking great pictures of
various agar plates and nitrocellulose filters and for printing my posters.
Jung‐Won Sim‐Brandenburg and Delia Barz gave me excellent technical assistance,
whereas the staff of the sequencing lab, namely Julia Tesch, Silvia Muschter, Julia
Hinzmann, and Marlies Panzer provided me with numerous DNA sequences. I am
grateful to all of you for becoming more than colleagues but also valuable friends.
Sincere thanks to Ursula Erikli for copy‐editing and continuous suggestions for
improving my English language skills.
This work was funded within the BMBF/VDI‐financed BiGRUDI network of the
Robert Koch Institute (RKI; Berlin). In this context I am also thankful to the members
of the “Aptamer work group” for the valuable scientific discussions.
Most grateful I am to my parents who shaped me to be the person I am today. They
always give me the feeling of being the best person in the entire world and thus help
me to overcome moments of uncertainty. Last but not least, I am grateful to my
partner for sharing the cheery moments with me as well as for supporting me in times
of despair. Thank you so much for always having the right word at the right moment
and for all the cooking.
‐ III ‐
Declaration of Authorship
I certify that the work presented here is, to the best of my knowledge and belief,
original and the result of my own investigations, except as acknowledged. The present
work has not been submitted, either in part or whole, for a degree at this or any other
University. Parts of this work have been published under the following title:
Miller, L., Richter, M., Hapke, C., Stern, D., & Nitsche, A. (2011) Genomic Expression
Libraries for the Identification of Cross‐Reactive Orthopoxvirus Antigens. PLoS ONE
6(7): e21950. Epub 2011 Jul 14.
Berlin,
Lilija Miller
‐ IV ‐
Abstract
The global eradication of smallpox led to the cessation of routine smallpox
vaccination due to rare but severe adverse reactions. Today, more than 30 years later,
the majority of the world’s population has no protective immunity against poxviruses.
Concurrently, the frequency of zoonotic poxvirus infections with monkeypox and
cowpox virus is increasing, accompanied by the fear of bioterro rist attacks with
smallpox. These developments emphasize the need for bio‐preparedness programs to
enable rapid and effective prevention and control of poxvirus‐associated disease
spread. Bio‐preparedness includes the availability of rapid detection methods as well
as the existence of safe vaccines and therapeutics that can be administered to the
majority of the population. Various existing poxvirus detection methods are well‐
established and highly sensitive. However, they are usually not suitable for rapid on‐
site detection of biothreat agents. Conventional smallpox vaccines, on the other hand,
show excellent immunogenic properties. Yet today, they can not be administered to a
growing proportion of individuals with impaired immunity, urging the development of
safer vaccines. Thereby, recombinant subunit vaccines are considered to be a safer
alternative to conventional smallpox vaccines.
To speed up the development of subunit vaccines and to evaluate the applicability of
synthetic peptide aptamers for poxvirus detection, screenings of bacteriophage‐based
libraries were utilized in the present study. First, a low‐cost approach for antigen
discovery was established and evaluated. This approach is based on serological
screenings of bacteriophage‐based genomic expression libraries. These screenings
resulted in the identification of 21 antigenic proteins. Sixteen of these 21 antigens
were also found to be cross‐reactive among cowpox and vaccinia virus. In addition,
seven of identified antigenic cross‐reactive proteins A3, A4, D13, E2, E3, E9, and H6
are proposed to be included in subunit vaccines due to their an tigenicity and
conservation among orthopoxviruses.
Additionally, combinatorial phage display methodology was utilized to identify
poxvirus‐specific peptide ligands as novel detection molecules. Affinity selections of
random peptide phage display libraries against infectious virus particles yielded 17
recurring peptide sequences indicating an enrichment of poxvirus‐binding phage
clones. After characterization of these 17 binding clones, three peptide sequences
were synthesized and characterized further. Thereby, one phage‐derived synthetic
peptide was shown to bind selectively and specifically to vaccinia virus particles. This
provides important insights into applicability of synthetic molecules for detection of
biothreat agents.
‐ V ‐
Zusammenfassung
Nach der erfolgreichen globalen Ausrottung der Pockenkrankheit wurde die
Pockenimpfung aufgrund seltener aber schwerer Komplikationen eingestellt. Heute,
nach mehr als 30 Jahren, weist die Mehrheit der Welt‐Bevölkerung keinen Immun‐
schutz mehr auf. Gleichzeitig steigt neben der Häufigkeit zoonotischer Pockenvirus‐
infektionen mit Affen‐ oder Kuhpockenviren auch die Angst vor Bioterror‐Anschlägen
mit Variolaviren. Diese Entwicklungen unterstreichen die Notwendigkeit von
Projekten, die vorbereitende Maßnahmen für den Fall eines Bioterroranschlags
treffen, um die Ausbreitung von Krankheitserregern zu verhindern. Hierzu zählt neben
der Entwicklung von schnellen und einfach zu bedienenden Diagnostikplattformen
auch die Verfügbarkeit von Impfstoffen und Therapeutika, die der Mehrheit der
Bevölkerung verabreicht werden können. Obwohl bereits zahlreiche, gut etablierte
Methoden für den Nachweis von Pockenviren existieren, sind diese für eine schnelle
Vor‐Ort‐Diagnostik häufig nicht geeignet. Vorhandene konventionelle Pockenimpf‐
stofe besitzen gute immunogene Eigenschaften, können jedoch einer steigenden
Anzahl immunsupprimierter Menschen nicht verabreicht werden. Somit ist eine
Entwicklung sicherer Pockenimpfstoffe erforderlich. Hierbei, stellen Subunit‐Impf‐
stoffe eine potentiell sicherere Alternative zu konventionellen Impfstoffen dar.
Um die Entwicklung von Subunit‐Impfstoffen voranzubringen und die Anwendbar‐
keit synthetischer Peptid‐Aptamere für Pockenvirusdetektion zu beurteilen, wurden
in der vorliegenden Arbeit Bakteriophagen‐basierte Bibliotheken gescreent. Zuerst
wurde eine kostengünstige Methode zur Antigen‐Identifizierung etabliert und
evaluiert. Bei dieser Methode werden Bakteriophagen‐basierte Expressionsbibliothe‐
ken mit Pocken‐Antiseren gescreent. Dank dieser serologischen Screenings konnten 21
immunogene Pockenproteine identifiziert werden. Sechzehn dieser 21 Proteine
wurden auch als kreuzreaktiv zwischen Vaccinia‐Virus und Kuhpockenvirus
identifiziert. Nach einer Auswertung, werden sieben der identifizierten kreuzreaktiven
Proteine A3, A4, D13, E2, E3, E9 und H6 aufgrund ihrer Antigenität und Konserviert‐
heit für die Verwendung in Subunit‐Impfstoffen vorgeschlagen.
Außerdem wird die kombinatorische Phagen‐Display‐Methode und ihre Verwen‐
dung zur Identifizierung pockenspezifischer Peptidliganden als neuartige Detektions‐
moleküle vorgestellt. Affinitätsselektionen von Phagen‐Display‐Bibliotheken gegen
infektiöse Vaccinia‐Virus‐Partikel führten zur erfolgreichen Anreicherung von 17
wiederkehrenden Peptidsequenzen, was auf eine Anreicherung von Pockenvirus‐
bindenden Phagenklonen hindeutet. Nach einer Charakterisierung dieser 17 den Klone, wurden drei Peptidsequenzen ausgewählt, synthetisiert und weiter
charakterisiert. Dabei konnte für eins dieser drei synthetischen Peptide eine spezifi‐
sche Bindung an Vaccinia‐Virus‐Partikel gezeigt werden. Dies demonstriert die
Eignung synthetischer Peptide für die Detektion von Bioterror‐Agenzien.
‐ VI ‐
Table of contents
Acknowledgments....................................................................................................................................III
Declaration of Authorship.....................................................................................................................IV
Abstract..........................................................................................................................................................V
Zusammenfassung...................VI
1. Introduction.............................................................................................................................................1
1.1. Orthopoxviruses (OPVs)...................................................................................................................................1
1.1.1. Human‐pathogenic OPVs................................... 1
1.1.2. Virion structure ..................................................................................... 4
1.1.3. OPV genome ............................................................................................ 5
1.1.4. OPV proteome............................................ 8
1.2. OPV vaccines and vaccine candidates.........................................................................................................9
1.2.1. First generation vaccines................................................................... 9
1.2.2. Second‐generation vaccines...........................................................10
1.2.3. Third‐ and fourth‐generation vaccines......................................11
1.3. Immune response to an OPV infection .....................................12
1.3.1. Humoral immune response ...........................................................................................................................12
1.3.2. Cellular immune response ..............................................................13
1.4. Immunogenic OPV proteins ..........................................................14
1.5. Detection of OPVs..............................................................................14
1.5.1. BiGRUDI network......................................................................................................14
1.5.2. Non‐antibody‐based detection of pathogens..........................15
1.6. Library screenings for the advancement of OPV vaccine and detection molecule
development ................................................................................................15
1.6.1. Bacteriophage λ‐based expression libraries (ELs)..............................................................................16
1.6.2. Phage display of random peptide libraries.............................................................................................18
2. Aims of Study........................................................................................................................................22
3. Materials and Methods.....................................................................................................................23
3.1. Materials ..............................................................................................................................................................23
3.2. Cell culture ...........................................................................................28
3.2.1. Maintenance and subculture routine ........................................................................................................28
3.2.2. Cell preservation and recovery.....................................................28
3.3. Virus propagation..............................................................................29
3.3.1. Virus stock production .....................................................................29
3.3.2. Plaque assay .........................................................................................................................................................29
3.4. Preparation of genomic viral DNA for cloning .....................................................................................30
3.4.1. OPV propagation .................................................................................30
3.4.2. Purification of OPV particles ..........................................................30
3.4.3. Purifi viral genomic DNA ...............................................30
3.4.4. Quantification of extracted DNA with real‐time PCR ..........31
‐ VII ‐ Table of contents
3.5. Construction of genomic OPV ELs .............................................................................................................32
3.5.1. Partial digestion of genomic DNA ................................................32
3.5.2. Size fractionation of partially digested DNA ...........................33
3.5.3. Ligation reaction .................................................................................33
3.5.4. Packaging reaction .............................................................................34
3.5.5. Amplification of the primary EL ..................................................................................................................34
3.6. Library validation..............................................................................34
3.6.1. Mathematical validation...................................................................34
3.6.2. Blue‐white screening.........................................................................35
3.7. Characterization of recombinant clones..................................35
3.7.1. Excision of the pBK‐CMV vector ..................................................................................................................35
3.7.2. Plasmid DNA isolation ......................................................................36
3.7.3. Restriction analysis............................................................................36
3.7.4. PCR amplification of insert DNA...................................................37
3.7.5. Sequencing of DNA inserts..............................................................38
3.7.6. Data processing...................................................................................................................................................38
3.8. Anti‐rA27 enzyme‐linked immunosorbent assay (ELISA)..............................................................39
3.9. Serological screening of ELs .........................................................39
3.9.1. Immunofluorescence assay (IFA) ................................................40
3.9.2. Ethics statement ..................................................................................40
3.9.3. Primary antibody screening..........................................................................................................................40
3.9.4. Secondary screening procedure ...................................................42
3.10. Analysis of immunopositive plaques......................................43
3.11. Random peptide phage display libraries ..............................43
3.12. Bacterial strain maintenance and culture ...........................................................................................43
3.13. Phage titering ...................................................................................44
3.14. Identification of peptide ligands to infectious VACV particles....................................................44
3.14.1. Propagation and purification of VACV particles .................44
3.14.2. Biopanning against VACV particles ..........................................44
3.14.3. Amplification of binding phage clones...................................................................................................45
3.14.4. DNA sequencing of selected phage clones.............................46
3.14.5. Identification of consensus peptide sequences...................46
3.14.6. Phage ELISA.......................................................................................................................................................46
3.15. Peptide synthesis............................................................................46
3.16. Characterization of synthetic anti‐OPV peptide ligands by peptide ELISA ...........................47
4. Results....................................................................................................................................................48
4.1. Construction of primary genomic ELs .....................................................................................................48
4.2. Amplified ELs ......................................................................................50
4.3. Validation of the constructed ELs...............................................50
4.3.1. Restriction analysis............................................................................51
4.3.2. Sequencing of recombinant clones..............................................51
4.3.3. Control screenings.....................................................................................................55
4.4. Identification of immunoreactive proteins of VACV..........................................................................57
4.5. Identification of immunoreactive proteins of CPXV ...........58
4.6. DNA sequences contained in immunoreactive clones ......................................................................60
4.7. Genes encoding immunoreactive proteins are distributed genome‐wide ...............................61
‐ VIII ‐ Table of contents
4.8. Cross‐reactive proteins of CPXV and VACV ...........................................................................................61
4.8.1. Cross‐reactive proteins of VACV and CPXV show wide functional diversity ...........................62
4.9. Identification of peptide ligands to infectious VACV particles ......................................................64
4.9.1. Identification of consensus peptide sequences......................64
4.9.2. Preliminary characterization of enriched phage clones with phage ELISA..............................66
4.10. Synthetic peptide ligands ...........................................................................................................................67
4.11. Peptide ELISA...................................................................................68
5. Discussion..............................................................................................................................................71
5.1. Recombinant vs. non‐recombinant titer of the constructed genomic ELs ...............................71
5.2. ELs with different insert size enable complete representation of viral sequences ..............72
5.3. DNA sequences found in recombinant phage clones.........................................................................73
5.4. Antigenicity of EL‐derived proteins..........................................................................................................74
5.5. Comparison of the bacteriophage‐based screening system to alternative methods for
antigen discovery.......................................................................................75
5.6. Bacteriophage‐based ELs allow identification of antigenic, cross‐reactive proteins ..........77
5.6.1. Primary vs. boosted immune response sera ...........................77
5.6.2. Screening ELs with sera from different species....................................................................................78
5.7. Large parts of the OPV genome encode immunoreactive proteins .............................................78
5.8. Limitations for the identification of antigenic, cross‐reactive proteins by screening
bacteriophage‐based ELs.......................................................................................................................................79
5.9. Relevance of identified cross‐reactive OPV proteins for subunit vaccine design..................79
5.9.1. Highly conserved proteins are best suited for subunit vaccine design ......................................80
5.9.2. Potential role of non‐membrane proteins in subunit vaccine development............................81
5.10. Techniques for improving binding properties of peptide ligands ............................................83
5.11. Synthetic peptides as surrogate antibodies for pathogen detection?......................................83
5.12. Implementing synthetic peptides for the detection of biothreat agents ................................85
5.13. Conclusions and perspectives ..................................................................................................................86
Abbreviations...........................................................................................................................................88
Figures.........................................................................................................................................................90
Tables.........................................................................................................................91
Formulas.....................................................................................................................................................91
References.................................................................................................................................................92
List of Publications...............................................................................................................................102
Conference and workshop participation......................................................................................103
‐ IX‐
Access to the YouScribe library is required to read this work in full.
Discover the services we offer to suit all your requirements!