  # Lesson 1.6 - …or what is a so rational about these functions?

- English
45 Pages
Learn all about the services we offer

Description

Mini-Quiz #2Lesson 1.6 Rational FunctionsLesson 1.6. . . or what is a so rational about these functions?Jeff MeyerJanuary 20, 2009Jeff Meyer Math 115 - Section 13Mini-Quiz #2Lesson 1.6 Rational FunctionsOutline1 Mini-Quiz #22 Lesson 1.6 Rational FunctionsJeff Meyer Math 115 - Section 13Mini-Quiz #2Lesson 1.6 Rational FunctionsMini-Quiz #2QuestionState whether each of the following is odd, even, or neither.21 x12x132x14 x +x15 x +2xJeff Meyer Math 115 - Section 13Mini-Quiz #2Lesson 1.6 Rational FunctionsMini-Quiz #2QuestionState whether each of the following is odd, even, or neither.21 x Even12 Oddx13 Even2x14 x + Oddx15 x + Neither2xJeff Meyer Math 115 - Section 13Mini-Quiz #2Lesson 1.6 Rational FunctionsRecall From Last TimeGoal of Chapter 1(Re-)Introduce basic functions and their propertiesBig Ideas From Last ClassIntroduced the concepts of sine, cosine, and tangentfunctions.Emphasized going between verbal, symbolic, andgraphical descriptions.Jeff Meyer Math 115 - Section 13Mini-Quiz #2Lesson 1.6 Rational FunctionsRecall From Last TimeGoal of Chapter 1(Re-)Introduce basic functions and their propertiesBig Ideas From Last ClassIntroduced the concepts of sine, cosine, and tangentfunctions.Emphasized going between verbal, symbolic, andgraphical descriptions.Jeff Meyer Math 115 - Section 13Mini-Quiz #2Lesson 1.6 Rational FunctionsAlgebraically building functions fromxBuild functions using only ...

Subjects

##### Formal sciences

Informations

Report a problem Mini-Quiz#2Lessno.1R6taoianFlnuioctnseyeMffeJ511htaMr31
Lesson 1.6
Jeff Meyer
. . . or what is a so rational about these functions?
January 20, 2009
S-ceitno Lesson 1.6 Rational
2
1
Mini-Quiz #2
Functions
15h1ec-Sonti
Outline
132#zisseLniMuQ-inaiounlF1.onat6RsntcoiatrMyeMeffJe inQ-iu#zL2seos1nMi-iniMsno2#ziuQontiRa.6tincFualath115-SffMeyerMeJ
Question State whether each of the following is odd, even, or neither. 1x2 1 2 x 1 3 x2 1 4x+ x 1 5x+x2
31noitce izQui-inonssLe#2oitaR6.1tcnuFlanMionsMini-Quiz#2atrMyeMeffJeitno31
Neither
1h51S-ce
Odd
Even
Odd
Question State whether each of the following is odd, even, or neither. 1x2Even 1 2 x 1 3 x2 1 4x+ x 1 5x+x2 ecti15-Sath1yerM
Goal of Chapter 1 (Re-)Introduce basic functions and their properties
Big Ideas From Last Class Introduced the concepts of sine, cosine, and tangent functions. Emphasized going between verbal, symbolic, and graphical descriptions.
no31eJeMffiMinmiesRecallFromLastTitaRlanocnuFnoitui-Q2Lz#soes.6n1 L2#ziuQ-iniMseos1n6.aRitnolaFunctionsRecallFLmorTtsaemita1heyMrffeMeJS-51itce31no
Big Ideas From Last Class Introduced the concepts of sine, cosine, and tangent functions. Emphasized going between verbal, symbolic, and graphical descriptions.
Goal of Chapter 1 (Re-)Introduce basic functions and their properties raeblgsAbulyaliclanoitaRnoitcnuFromxgnufliidnofscnit-Quiz#2Lesson1.6iMin
Terminology Letfbe a polynomial function. The largest natural number for whichanis not zero is the DEGREEoff.
Sect115-3
Deﬁnition (Multiply) A POWERFUNCTIONis a function of the form f(x) =axkfor constantsa,k (Add) A POLYNOMIALFUNCTIONis a function of the form f(x) =anxn+an1xn1+∙ ∙ ∙+a1x+a0for constants an,an1, . . . ,a0and natual numbers 1,2, . . .n. (Divide) A RATIONALFUNCTIONis a function of the form gf((xx))wheref(x)andg(x)are polynomial functions.
Build functions using only algebraic operations onx
ion1feMfJaMhtyere 2Lz#ui-QniMisoes.6n1tiRaaloncnuFnoitglAsarbeicallybuildingfucnitnofsorxm5-11ctSeereythMaJMffe
Deﬁnition (Multiply) A POWERFUNCTIONis a function of the form f(x) =axkfor constantsa,k (Add) A POLYNOMIALFUNCTIONis a function of the form f(x) =anxn+an1xn1+∙ ∙ ∙+a1x+a0for constants an,an1, . . . ,a0and natual numbers 1,2, . . .n. (Divide) A RATIONALFUNCTIONis a function of the form gf((xx))wheref(x)andg(x)are polynomial functions.
Build functions using only algebraic operations onx
3n1io
Terminology Letfbe a polynomial function. The largest natural number for whichanis not zero is the DEGREEoff. orxmitnouFcnnolaaRitn1.6essoz#2L-QuifsnoitcnufgnidlibulyalicraeblgsAiniM
Terminology Letfbe a polynomial function. The largest natural number for whichanis not zero is the DEGREEoff.
ion13
Deﬁnition (Multiply) A POWERFUNCTIONis a function of the form f(x) =axkfor constantsa,k (Add) A POLYNOMIALFUNCTIONis a function of the form f(x) =anxn+an1xn1+∙ ∙ ∙+a1x+a0for constants an,an1, . . . ,a0and natual numbers 1,2, . . .n. (Divide) A RATIONALFUNCTIONis a function of the form fg((xx))wheref(x)andg(x)are polynomial functions.
Build functions using only algebraic operations onx
115-SecthtaMreyeMffeJ effMJ
Terminology Letfbe a polynomial function. The largest natural number for whichanis not zero is the DEGREEoff.
1noi
Build functions using only algebraic operations onx
Deﬁnition (Multiply) A POWERFUNCTIONis a function of the form f(x) =axkfor constantsa,k (Add) A POLYNOMIALFUNCTIONis a function of the form f(x) =anxn+an1xn1+∙ ∙ ∙+a1x+a0for constants an,an1, . . . ,a0and natual numbers 1,2, . . .n. (Divide) A RATIONALFUNCTIONis a function of the form fg((xx))wheref(x)andg(x)are polynomial functions.
35-11ctSeereythMaitcnfsnoxmoritnouFcnbearAsgllybuicalngfuildiiniML2#ziuQ-.6n1soesalontiRa S-51itceMrey1hta13on
What you should get out of lesson. . . Given a rational function, you should be able to determine its Domain. Zeros End behavior.
Note All power functions with natural number exponents are polynomials. All polynomials are rational functions. Do NOT confuse power functionsxkwith exponential functionsax. They have very different properties.
Remarks
JeffMeMiniseos1n6.Q-iu#zL2ncFuontitiRaalons
en expand_more