Tutorial  on  Differential Galois Theory II

Tutorial on Differential Galois Theory II

-

English
69 Pages
Read
Download
Downloading requires you to have access to the YouScribe library
Learn all about the services we offer

Description

TutorialonDifferential Galois Theory IIT. DyckerhoffDepartment of MathematicsUniversity of Pennsylvania02/13/08 / OberflockenbachOutlineToday’s planPicard Vessiot ringsThe ∂ Galois group schemeThe Torsor theorem and applicationsDescent theory for Picard Vessiot extensionsn th order equation ⇒ a system of 1 st order equations:    y 0 1 0 ... 0 y    ∂(y) 0 0 1 ... 0 ∂(y)    ∂ =    . . ... .. .    . . ..n−1 n−1∂ (y) −a −a −a ... −a ∂ (y)0 1 2 n−1⇒ We develop Picard Vessiot theory for general systems of1 st order equations:n×n∂(y) = Ay with A∈ Fwhich we denote by [A].Systems of ∂ equationsYesterday we considered:a field F with derivation ∂nan equation ∂ (y)+···+a ∂(y)+a y = 0 with a ∈ F1 0 i⇒ We develop Picard Vessiot theory for general systems of1 st order equations:n×n∂(y) = Ay with A∈ Fwhich we denote by [A].Systems of ∂ equationsYesterday we considered:a field F with derivation ∂nan equation ∂ (y)+···+a ∂(y)+a y = 0 with a ∈ F1 0 in th order equation ⇒ a system of 1 st order equations:    y 0 1 0 ... 0 y    ∂(y) 0 0 1 ... 0 ∂(y)    ∂ =    . . ... . . .    . . ..n−1 n−1∂ (y) −a −a −a ... −a ∂ (y)0 1 2 n−1Systems of ∂ equationsYesterday we considered:a field F with derivation ∂nan equation ∂ (y)+···+a ∂(y)+a y = 0 with a ∈ F1 0 in th order equation ⇒ a system of 1 st order equations:    y 0 1 0 ... 0 y    ∂(y) 0 0 1 ... 0 ∂(y)    ∂ =    . . ...

Subjects

Informations

Published by
Reads 18
Language English
Report a problem
Tutorial on Differential Galois Theory
T. Dyckerhoff
Department of Mathematics University of Pennsylvania
02/13/08 / Oberflockenbach
II
Outline
Today’s plan
Picard-Vessiot rings
The-Galois group scheme
The Torsor theorem and applications
Descent theory for Picard-Vessiot extensions
)(yyy(1n.W)1....000...0.12a0aana1...erensyalemstf1soots-redrauqenoitedevelopPicard-Vseistohtoeyrofgr
a0
y
an
equation
n
a fieldFwith derivation
Systems ofoitauqe-sn Yesterday we considered:
.]A[yb
with
ai
=
0
)
(y
+
a1
+
(y
+
)
AhFwyti)yA=:s(notewedehichn×nw
F
uationahordereqnt-:nsioatqureedrots-1fometsys10..0=(1)y.n)yy(
elopedevWtohtseisdrV-iPacsyalerenrgforyeoredrots-1fosmetsqeauitno:s()yA=ywithAFn×nwhichedewetonA[yb
n-th order equationa system of 1-st order equations: 0 0 (yy) 0 0 (yy) = n.1(y)a0an1 n.1(y )
.]
1 0 . a1
Systems ofnsuqe-oita Yesterday we considered: a fieldFwith derivationan equationn(y) +∙ ∙ ∙+a1(y) +a0y=0 withaiF
. . . . . . . . . . . .
0 1 a2
Systems ofionsquat-e Yesterday we considered: a fieldFwith derivationan equationn(y) +∙ ∙ ∙+a1(y) +a0y=0 withaiF n-th order equationa system of 1-st order equations: (yy) 100010......00 (yy)= n.1(y)a0a1.a2......an1.n1(y) We develop Picard-Vessiot theory for general systems of 1-st order equations: (y) =AywithAFn×n which we denote by[A].
)R(nY(::xiLGY[Y=F,dijAY)=dRanR2sinaniteY()]1main3R/Ftegraldo.e.i,cirtemoegsiwcnenoas)h(RotQu-isR4sinastnotson-t.non,i.empleDenitionAPcira-deVssoirtni]i[Aorgfngri-sa1htiwF/RnegsiF/RedbyeratdameafunosultnlaamrtitnodraciPfotoisseV-ffdoel=nsioctraV-seacdredlistoal-rivilsPiidea
a
system
of
-equations
ioit
Picard-Vessiot rings
Given
n
n×n
a
-fieldFwith field of constants
K
A
[A],
F
yhseetdryasednringcoincideswit
Definition APicard-Vessiot ringfor[A]is a-ringR/Fwith 1R/Fgenerated by a fundamental solution matrix:is YGLn(R) :(Y) =AYandR=F[Yij,det(Y)1] Ris an integral domain R/Fis geometric, i.e. Quot(R)has no new constants Ris-simple, i.e. no non-trivial-ideals
Given a-fieldFwith field of constantsK a system of-equations[A],AFn×n
2 3 4
no
Picard-Vessiot rings
initdsedaysterthyeeswidlforfcatle=ded-VessioPicariocgdicnoissnirtaricVed-ontifPso
Picard-Vessiot rings
Given a-fieldFwith field of constantsK a system of-equations[A],AFn×n
Definition APicard-Vessiot ringfor[A]is a-ringR/Fwith 1R/Fis generated by a fundamental solution matrix: YGLn(R) :(Y) =AYandR=F[Yij,det(Y)1] 2Ris an integral domain 3R/Fis geometric, i.e. Quot(R)has no new constants 4Ris-simple, i.e. no non-trivial-ideals
Picard-Vessiot field= field of fractions of Picard-Vessiot ring coincides with yesterday’s definition
y00
evogt(Rr
+y=0
Example overR(t)
)
2
order equation translates into the system yy21=0101 yy12
the
2-nd
s(cosit)nbve=yYc)t(t(so)t(nnismentalsoafundartxisiigulitnoamaPis=1)2(tin+s)2nirtoisseV-draci(t),[cosR(t))R=sot(tich)tw]is(n
=Rc[so(R)tsin((t),ithct)]ws+2)t(so1=2)t(niaricaPisiossVed-rtniogevRrt()
+y=0
Example overR(t)
the 2-nd order equation translates into the system yy12=1010 yy21
y00
a fundamental solution matrix is given by cossni((tt))csonis((tt))
Y=
Example overR(t)
y00
+y=0 the 2-nd order equation translates into the system yy2=0101 yy121
a fundamental solution matrix is given by Y=cos(t))csonsi((tt))sin(t
R=R(t)[cos(t),sin(t)]with
cos(t)2+sin(t)2=1
is a Picard-Vessiot ring overR(t)