Tutorial on Wave Digital Filters
64 Pages
English

Tutorial on Wave Digital Filters

-

Downloading requires you to have access to the YouScribe library
Learn all about the services we offer

Description

Intro WDF Summary AppendixTutorial on Wave Digital FiltersDavid YehCenter for Computer Research in Music and Acoustics (CCRMA)Stanford UniversityCCRMA DSP SeminarJanuary 25, 2008©D. Yeh 2008 Tutorial on Wave Digital FiltersIntro WDF Summary AppendixOutline1 IntroductionMotivationClassical Network Theory2 Wave Digital FormulationWave Digital One-Ports DerivationWave AdaptorsNonlinearity3 SummaryExamplesConclusions4 AppendixScattering Junction DerivationsMechanical Impedance Analogues©D. Yeh 2008 Tutorial on Wave Digital FiltersIntro WDF Summary Appendix Motiv Netwrk ThryOutline1 IntroductionMotivationClassical Network Theory2 Wave Digital FormulationWave Digital One-Ports DerivationWave AdaptorsNonlinearity3 SummaryExamplesConclusions4 AppendixScattering Junction DerivationsMechanical Impedance Analogues©D. Yeh 2008 Tutorial on Wave Digital FiltersIntro WDF Summary Appendix Motiv Netwrk ThryWave digital filters model circuits used for filtering.OverviewFettweis (1986), Wave Digital Filters: Theory and Practice.Wave Digital Filters (WDF) mimic structure of classicalfilter networks.Low sensitivity to component variation.Use wave variable representation to break delay free loop.WDF adaptors have low sensitivity to coefficientquantization.Direct form with second order section biquads are alsorobustTransfer function abstracts relationship between componentand filter stateWDF provides direct one-to-one mapping from ...

Subjects

Informations

Published by
Reads 103
Language English
IntroWDFSummarypAepdnxi©DotuTlairheY.8002tagiillFWaonDive
Tutorial on Wave Digital Filters
CCRMA DSP Seminar January 25, 2008
David Yeh
Center for Computer Research in Music and Acoustics (CCRMA) Stanford University
etsr
s
Appendix Scattering Junction Derivations Mechanical Impedance Analogues
Summary Examples Conclusions
lter
2
1
Wave Digital Formulation Wave Digital One-Ports Derivation Wave Digital Adaptors Nonlinearity
Introduction Motivation Classical Network Theory
4
3
ammuSFDWortnIintlOuixndpeAprye©alFiigitaveDlonWroaiT8tu2h00.DeY
ApryndpeMoixvNtirwterhTktuOyenilItnorDWSFmuamnoaWeviDigatFlli.Yeh2008TutorialD©
1
2
3
4
Introduction Motivation Classical Network Theory
Wave Digital Formulation Wave Digital One-Ports Derivation Wave Digital Adaptors Nonlinearity
Summary Examples Conclusions
Appendix Scattering Junction Derivations Mechanical Impedance Analogues
sret
smodelcitallterdeofrtlcriustsuvierewinerOvg.08Tueh20alontoriD©Y.iltetalFDigiWave
Fettweis (1986), Wave Digital Filters: Theory and Practice. Wave Digital Filters (WDF) mimic structure of classical filter networks.
Use wave variable representation to break delay free loop. WDF adaptors have low sensitivity to coefficient quantization.
Low sensitivity to component variation.
sr
Direct form with second order section biquads are also robust Transfer function abstracts relationship between component and filter state WDF provides direct one-to-one mapping from physical component to filter state variable
WavedigitwrkThryMxtovieNAyppneidSuDFarmmInoWtr
etvNkTwrixndtiMotigillaWyrhdevaIntamyrpAeporDWSFmutacilppAsnoiomedetsructiclridforsuseringlte
Ideal for interfacing with digital waveguides (DWG).
Piano hammer mass spring interaction Generally an ODE solver Element-wise discretization and connection strategy Real time model of loudspeaker driver with nonlinearity Multidimensional WDF solves PDEs
giDilFtateil
Modeling physical systems with equivalent circuits.
rsuT80irotnolaevaWeh20©D.Y
epdnxioMitNvterwntroWDFSummaryAphrkTutyOneli©Deh.YI8002otuTlairaWnoveDigitalFilters
Appendix Scattering Junction Derivations Mechanical Impedance Analogues
Wave Digital Formulation Wave Digital One-Ports Derivation Wave Digital Adaptors Nonlinearity
Summary Examples Conclusions
4
Introduction Motivation Classical Network Theory
2
3
1
©retl
Describe a circuit in terms of voltages (across) and current (thru) variables General N-port network described by V and I of each port Impedance or admittance matrix relates V and I VV21 ZZ1211.Z.1.2. . .ZZ12NNII21= V.NZ.N1. . .ZN.NI.N| {z } Z
sigitalFilonWaveDT8turoai.DeY2h00rammppAyWortuSFDNeivrktwdienotxMisacNltehTyrlCsaryN-portworkTheometsysraenilnI
1+z1V(z1) Z(z1) =2T= C1z1I(z1)
For example, use Bilinear transform s=T211+zz11 Capacitor:Z(s) =1 sC
Y.D©02healonWave08Tutorilietsr
v[n] =2CT(i[n] +i[n1]) +v[n1] v[n] depends instantaneously on i[n] withR0=2CT This causes problems when trying to make a signal processing algorithm Can also solve for solution using a matrix inverse (what SPICE does).
iDigatFlNvteoMitdnxipAepicallasshryCwrkTrymaumFSWDrontIroidigatzitaoifntionlcomputaroehelEywteNTkroisedetcrntmeis-w
gnirettaitutubstndscionavaveroWylbseraairowtehTkcisseNlahrkTlayCvNtiwretepdnxioMmuamyrpAntroWDFSIs
A=V+RI V=A+2B B=VRI I=A2RB Variable substitution fromVandIto incident and reflected waves,AandB An N-port gives anN×Nscattering matrix Allows use of scattering concept of waves
alFilter00h2ut8T©YeD.DevatigiairoWnol
italeDigersFiltturo00T8Wnvaaiolh2YeD.©
Input port (1) and output port (2) VV21=ZZ1121ZZ2212 II12
Represent as scattering matrix and wave variables b1 b2=SS1211SS2212 aa21
Scattering matrixSdetermines reflected wavebnas a linear combination of N incident wavesa1, . . . ,an Guts of the circuit abstracted away intoSorZmatrix
mocslnomesuymnidroicvewaecelontryrlCsaisacNlteowrkTheoryTwoporticoahcitsreziartclieeamprsWoFDuSmmraAyppnedixMotivNetwrkThtrIn
onalveWagiDilFtaY.D©02heuT80irotlietsr
Appendix Scattering Junction Derivations Mechanical Impedance Analogues
Wave Digital Formulation Wave Digital One-Ports Derivation Wave Digital Adaptors Nonlinearity
Summary Examples Conclusions
4
Introduction Motivation Classical Network Theory
2
3
1
ISFDWortnAprymaumWDixndpe-1oPtrAsadtproNsonlinearityOutlien