218 Pages
English

Inorganic-organic hybrid polymers [Elektronische Ressource] : solution-processible coating materials for defined surface functionalization / Daniel Keßler

-

Gain access to the library to view online
Learn more

Description

Inorganic-Organic Hybrid Polymers: Solution-Processible Coating Materials for Defined Surface Functionalization Dissertation zur Erlangung des Grades “Doktor der Naturwissenschaften” im Promotionsfach Chemie am Fachbereich Chemie, Pharmazie und Geowissenschaften der Johannes Gutenberg-Universität Mainz Daniel Keßler geb. in Bendorf Mainz, 2009 Die vorliegende Arbeit wurde unter Betreuung von PD Dr. Patrick Theato in der Zeit von Oktober 2006 bis Juli 2009 am Institut für Organische Chemie der Johannes Gutenberg-Universität Mainz angefertigt. Dekan: Prof. Dr. W. Hofmeister Erster Berichterstatter: PD Dr. P. Theato Zweiter Berichterstatter: Prof. Dr. R. Zentel Tag der mündlichen Prüfung: 18.08.2009 Table of Contents I List of Abbreviations III 1 Introduction 1 1.1 Surface Coatings 1 1.1.1 Functional Surface Coatings 5 1.1.2 Reactive Surface Coatings 6 1.1.3 Semi-Conductive Polymer Films and Their Applications 7 1.2 Coating Adhesion and Coating/Thin Film Characterization 10 1.2.1 Coating Adhesion 10 1.2.2 Standardization of Adhesion Tests 12 1.2.3 Coating/Thin Film Characterization 13 1.3 Polymeric Materials 22 1.3.1 Atom Transfer Radical Polymerization (ATRP) 23 1.3.2 Reversible Addition Fragmentation Chain Transfer (RAFT) 24 1.3.3 Silicon-Containing Materials as Adhesion Promoters 26 1.3.

Subjects

Informations

Published by
Published 01 January 2009
Reads 19
Language English
Document size 10 MB



Inorganic-Organic Hybrid Polymers:
Solution-Processible Coating Materials
for Defined Surface Functionalization




Dissertation
zur Erlangung des Grades
“Doktor der Naturwissenschaften”
im Promotionsfach Chemie





am Fachbereich Chemie, Pharmazie und Geowissenschaften
der Johannes Gutenberg-Universität Mainz





Daniel Keßler

geb. in Bendorf





Mainz, 2009 Die vorliegende Arbeit wurde unter Betreuung von PD Dr. Patrick Theato in der Zeit
von Oktober 2006 bis Juli 2009 am Institut für Organische Chemie der Johannes
Gutenberg-Universität Mainz angefertigt.


































Dekan: Prof. Dr. W. Hofmeister
Erster Berichterstatter: PD Dr. P. Theato
Zweiter Berichterstatter: Prof. Dr. R. Zentel
Tag der mündlichen Prüfung: 18.08.2009
Table of Contents I
List of Abbreviations III

1 Introduction 1
1.1 Surface Coatings 1
1.1.1 Functional Surface Coatings 5
1.1.2 Reactive Surface Coatings 6
1.1.3 Semi-Conductive Polymer Films and Their Applications 7
1.2 Coating Adhesion and Coating/Thin Film Characterization 10
1.2.1 Coating Adhesion 10
1.2.2 Standardization of Adhesion Tests 12
1.2.3 Coating/Thin Film Characterization 13
1.3 Polymeric Materials 22
1.3.1 Atom Transfer Radical Polymerization (ATRP) 23
1.3.2 Reversible Addition Fragmentation Chain Transfer (RAFT) 24
1.3.3 Silicon-Containing Materials as Adhesion Promoters 26
1.3.4 Sol-Gel Coatings and Poly(silsesquioxanes) 27
1.3.5 Hybrid Polymers based on Poly(silsesquioxanes) 30

2 Aim of Work 33

3 Results and Discussion 35
3.1 Synthesis of Inorganic-Organic Hybrid Polymers 35
3.1.1 Hybrid Polymer Synthesis Using ATRP 35
3.1.2 Hybrid polymer Synthesis Using RAFT 37
3.1.3 Microreactor Based Synthesis of Poly(methylsilsesquioxanes) 38
3.1.4 Synthesis of Hybrid Polymers Starting from Organic Polymers 39
3.2 General Coating Properties 41
3.3 Functional Coating Materials 43
3.3.1 Temperature-Responsive Coatings 43
3.3.2 Semi-Conductive Coatings 43
3.4 Reactive Coating Materials 45
3.4.1 Surface-Analogous Reaction 45
3.4.2 Modification on the Surface 46

4 Publications 49
4.1 “Synthesis of Processable Inorganic-Organic Hybrid Polymers Based on
Poly(silsesquioxanes): Grafting from Polymerization Using ATRP” 51
4.2 “Synthesis of Functional Inorganic-Organic Hybrid Polymers Based on
Poly(silsesquioxanes) and Their Thin Film Properties” 69
4.3 “Synthesis of Defined Poly(silsesquioxane)s: Fast Polycondensation of
Trialkoxysilanes in a Continuous-Flow Microreactor” 89 II Table of Contents
4.4 “Surface Coatings Based on Polysilsesquioxanes: Grafting-from
Approach Starting from Organic Polymers” 101
4.5 “Temperature-Responsive Surface Coatings Based on
Poly(methylsilsesquioxane)-Hybrid Polymers” 109
4.6 “Surface Coatings Based on Polysilsesquioxanes:
Solution Processible Smooth Hole-Injection-Layers for Optoelectronic
Applications” 117
4.7 “Substrate-Independent Stable and Adherent Reactive Surface Coatings
and Their Conversion with Amines” 127
4.8 “Reactive Surface Coatings Based on Polysilsesquioxanes: Defined
Adjustment of Surface Wettability” 137
4.9 “Reactive Surface Coatings Based on Polysilsesquioxanes: Controlled
Functionalization for Specific Protein Immobilization” 159
4.10 “Modular Approach toward Multi-Functional Surfaces with Adjustable
and Dual-Responsive Wettability Using a Hybrid Polymer Toolbox” 185

5 Conclusion 199

6 Publications – Overview 201

7 Acknowledgements 207















List of Abbreviations III
A ampere
a.u. arbitrary units
AFM atomic force microscopy
A Hamaker constant H
AIBN azoisobutyronitrile
ATR attenuated total reflectance
ATRP atom transfer radical polymerization
BPO benzoyl peroxide
br broad peak in NMR spectrum
CA contact angle
CDCl chloroform, deuterized 3
CPMAS NMR charge polarized magic angle spinning nuclear magnetic resonance
CTA chain transfer agent
CV cyclovoltammetry
δ chemical shift (NMR spectroscopy)
d duplet (splitting in NMR spectroscopy)
D, d distance
DCB dichlorobenzene
DCM dichloromethane
DMF dimethylformamide
DSC differential scanning calorimetry
EA elemental analysis
ETL electron transport layer
eV electron volt
FBP folate-binding protein
FD field desorption (mass spectrometry)
FPA pentafluorophenylacrylate
FPVB pentafluorophenyl vinylbenzoate
FTIR Fourier transform infrared spectroscopy
FTO fluorine tin oxide
GPC gel permeation chromatography
h hours
HIL hole injection layer
HIM hole injection material
HOMO highest occupied molecular orbital
HTL hole transport layer
Hz hertz
IPM initiating groups per molecule
ITO indium tin oxide
J coupling constant (NMR spectroscopy)
LCST lower critical solution temperature
LUMO lowest unoccupied molecular orbital IV List of Abbreviations
m multiplet (splitting in NMR spectroscopy)
MA methacrylate
mCTA macro chain transfer agent
M molecular weight of entanglement e
MI macroinitiator
MMA methylmethacrylate
M , M molecular weight (number average) N n
MTMS methyltrimethoxysilane
M , M molecular weight (weight average) W w
n refractive index
NBD 7-nitro-2,1,3-benzoxadiazole
NIPAM N-isopropylacrylamide
NMP nitroxide mediated polymerization
NMR nuclear magnetic resonance
OLED organic light-emitting diode
OPVC organic photovoltaic cell
ORMOCER® organically modified ceramic
OTFT organic thin film transistor
PA pre-albumin
PAN polyacrylnitrile
PBS phosphate buffered saline
PC polycarbonate
PDI polydispersity index (M /M ) W N
PDMA poly(decylmethacrylate)
PDMS poly(dimethylsiloxane)
PEG poly(ethylene glycol)
PEHA poly(ethylhexylacrylate)
PFPA poly(pentafluorophenylacrylate)
PFPVB poly(pentafluorophenyl vinylbenzoate)
P gel point gel
PHAH polyhalogenated aromatic hydrocarbons
PLED polymer light-emitting diode
PMA poly(methylacrylate)
PMMA poly(methylmethacrylate)
PMSSQ poly(methylsilsesquioxane)
PNIPAM poly(N-isopropylacrylamide)
POSS polyhedral oligomeric silsesquioxane (Si O R ) 8 12 8
P oxidation potential (CV) ox
ppm parts per million (NMR spectroscopy)
PPSSQ poly(phenylsilsesquioxane)
PPVB poly(propargyl vinylbenzoate)
P reduction potential (CV) redList of Abbreviations V
PS polystyrene
PSSQ poly(silsesquioxane)
PTFE polytetrafluroroethylene
PVB propargyl vinylbenzoate
PVC polyvinylchloride
q quartet (splitting in NMR spectroscopy)
Θ advancing contact angle a
Θ receding contact angle r
RAFT reversible addition fragmentation chain transfer
RMS root mean square
rpm rounds per minute
RT room temperature
s singlet (splitting in NMR spectroscopy)
SEC size exclusion chromatography
SEM scanning electron microscopy
SPR surface plasmon resonance
t triplet (splitting in NMR spectroscopy)
τ transit time (time-of-flight)
T1 T1 branch in silsesquioxane network (two free silanol groups)
T2 T2 branch in silsesquioxane network (one free silanol group)
T3 T3 branch in silsesquioxane network (completely condensed)
T4 thyroxine
TCO transparent conductive oxide
TEOS tetraethoxysilane
T glass transition temperature g
TGA thermo gravimetrical analysis
THF tetrahydrofurane
TOF time-of-flight
UV/Vis ultra violet/visible light
V volt
wt% , wt.-% weight percent
XPS X-ray photoelectron spectroscopy

VI List of Abbreviations