Investigation of control concepts for high-speed induction machine drives and grid side pulse-width modulation voltage source converters [Elektronische Ressource] / Kamran Jalili

Investigation of control concepts for high-speed induction machine drives and grid side pulse-width modulation voltage source converters [Elektronische Ressource] / Kamran Jalili

-

English
174 Pages
Read
Download
Downloading requires you to have access to the YouScribe library
Learn all about the services we offer

Description

Technische Universität Dresden Investigation of Control Concepts for High-Speed Induction Machine Drives and Grid Side Pulse-Width Modulation Voltage Source Converters Kamran Jalili von der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden zur Erlangung des akademischen Grades eines Doktoringenieurs (Dr.-Ing.) genehmigte Dissertation Vorsitzender: Prof. Dr.-Ing. habil. F. Ellinger Gutachter: Prof. Dr.-Ing. S. Bernet Prof. Dr.-Ing. A. Mertens (Leibniz Universität Hannover) Dr. M. Malinowski (Warsaw University of Technology) Tag der Einreichung:10.11.2008 Tag der Verteidigung: 26.02.

Subjects

Informations

Published by
Published 01 January 2009
Reads 16
Language English
Document size 6 MB
Report a problem






Technische Universität Dresden



Investigation of Control Concepts for High-Speed
Induction Machine Drives and Grid Side Pulse-Width
Modulation Voltage Source Converters



Kamran Jalili

von der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität
Dresden

zur Erlangung des akademischen Grades eines


Doktoringenieurs

(Dr.-Ing.)


genehmigte Dissertation

Vorsitzender: Prof. Dr.-Ing. habil. F. Ellinger
Gutachter: Prof. Dr.-Ing. S. Bernet
Prof. Dr.-Ing. A. Mertens (Leibniz Universität Hannover)
Dr. M. Malinowski (Warsaw University of Technology)



Tag der Einreichung:10.11.2008 Tag der Verteidigung: 26.02.2009














































































Kamran Jalili




Investigation of Control Concepts for High-Speed
Induction Machine Drives and Grid Side Pulse-Width
Modulation Voltage Source Converters




















































































































5


Preface
This thesis was written during my Ph.D. studies at the Power Electronics Group of
Berlin University of Technology, Germany holding a DAAD scholarship.
First of all, I would like to express my gratitude to Prof. Steffen Bernet of Dresden
University of Technology for his ever present supports, numerous fruitful discussions,
and encouragement throughout the period of this research.
A special thank goes to Dr. Mariusz Malinowski from the Warsaw University of
Technology for discussions which enhanced my knowledge.
Furthermore, I thank Niels Weitendorf for his support in preparation of the laboratory
set-up. Also I wish to thank Dr. Albrecht Gensior for his excellent proof-reading
service.
Finally, I am grateful to my wife Shirin and our son Mani for their love and patience.


Kamran Jalili Berlin, February 2009



































































7

Table of Contents
Nomenclature……………………………………………………………………………. 9

1 Introduction………………………………………………………………...………... 19
1.1 State-of-the-art low voltage ac drives………………...…………………………. 19
1.1.1 Electric ac machines……………………………………………………... 20
1.1.2 Machine side and grid side converters…………………………………. 21
1.1.3 Dc-link capacitor………………………………………………………… 23
1.1.4 Grid side filter…………………………………………………………… 24
1.1.5 Overview of control strategies of induction machine drives…………….. 24
1.1.6 of active front end converters…………... 26
1.1.7 Industrial applications…………………………………………………… 27

2 Characteristics and State-of-the-art of High-Speed Drives........………………….. 29
2.1 Characteristics of high-speed drives……………….……………………………. 29
2.1.1 Advantages………………………………………………………………. 29 2.1.2 Disadvantages……………………………………………………………. 30
2.1.3 Applications……………………………………………………………... 30
2.1.4 Power and speed range…………………………………………………... 31
2.2 State-of-the-art technology of high-speed drives………………………………... 33
2.2.1 Electric machines………………………………………………………... 33 2.2.2 Bearings………………………………………………………………….. 34
2.2.3 Converter………………………………………………………………… 34 2.2.4 Control…………………………………………………………………… 36
2.3 Subject, motivation, and structure of the thesis…………………………………. 37

3 Control of High-Speed Induction Machines………...……………………………... 41
3.1 Definition of an exemplary high-speed induction machine drive……………….. 41
3.2 Mathematical description of induction machines……………………………….. 42
3.3 Field orientation…………………………………………………………………. 45
3.3.1 Flux vector estimation using stator voltages and currents………………. 48
3.3.2 stator currents and rotor speed……………. 49
3.4 Field oriented control of induction machines…………………………………… 52
3.4.1 Comparison of RFOC, MFOC, and SFOC…………..…………..……… 53
3.4.2 Indirect RFOC with PI current and speed controllers...…………………. 57
3.5 Direct torque control of induction machines……………………………………. 67
3.5.1 Control of stator flux and electromechanical torque…………………….. 69
3.5.2 Speed control loop………………………………………………...……... 71
3.6 Comparison of indirect RFOC and DTC for the exemplary high-speed
induction machine ………………………………………………………………. 72 8 TABLE OF CONTENTS
3.6.1 Simulation results………………………………………………………... 72
3.6.2 Experimental investigations of the indirect RFOC……….……………... 81
3.7 Comparison of 2L VSC and 3L-NPC VSC for the high-speed induction
machine drive with RFOC………………………………………………………. 86
3.7.1 Converter design………………………………………………………… 88 3.7.2 Investigation of simulation results………………………………………. 90
3.8 Summary………………………………………………………………………… 93


4 PWM Active Front End Converters………………………………………………... 95
4.1 Advantages and disadvantages of PWM active front end converters…………… 95
4.2 Mathematical description of PWM active front end converters………………… 96
4.3 Selection of control strategy…………………………………………………….. 100
4.4 Voltage-oriented control of PWM active front end converters…………………. 103
4.4.1 d-q model of PWM active front end converters with L-filter…………… 103
4.4.2 Structure of the applied PLL…………………………………………..… 106
4.4.3 PI-based current control……………………………………………….… 108
4.4.4 PI-based dc-link voltage control……………………………………….... 110
4.4.5 Performance investigation of the voltage-oriented controlled PWM
active front end converters at symmetrical sinusoidal grid voltage……... 113
4.4.6 Influences of the grid voltage distortions on the steady-state
performance of voltage-oriented control…………………………..…….. 116
4.4.6.1 Performance of the current control loop of VOC for a distorted
grid………………………………………………………...….... 119
4.4.6.2 Simulation and experimental results……………………...……. 122
4.5 Input filter design for PWM active front end converters…………………...…… 126
4.5.1 L-filter design procedure……………………………………...…………. 127
4.5.2 LCL-filter design procedure………………………………………...…… 134
4.6 Control of PWM active front end converters with LCL-filter………...…...……. 144
4.6.1 Simulative investigations……………………………………………..…. 150 4.6.2 Experimental investigations………………………………………...…… 154
4.6.3 Robustness of the current control loop………………………………...… 158
4.7 Summary……………………………………………………………………...…. 158


5 Conclusions…………………………………………………………………..………. 161


Bibliography……………………………………………………………………...……… 165

9

Nomenclature
List of Acronyms and Names
Acronym / Name Meaning
ACM electric ac machine
AL-E-C aluminium electrolytic capacitor
ARS asymmetrical regular sampling
ARS-PWM etrical regular sampling pulse-width modulation
ARS-ZSS-PWM asymmetrical regular sampling pulse-width modulation with added
third harmonic
DCMLC diode clamped multilevel converter
DPC direct power control
DPF displacement power factor
DSC direct self control
DSP discrete signal processor
DTC direct torque control
DTC-SVM direct torque control with space vector modulation
FC film capacitor
FCMLC flying capacitor multilevel converter
FOC field-oriented control
GC grid side converter
HSM high-speed electric machine
HSIM high-speed induction m
HSIMD high-speed induction machine drive
IGBT insulated-gate bipolar transistor
IM induction machine
MC machine side converter
MFOC magnetizing-flux-oriented control
N grid neutral point G
N machine neutral point M
NP dc-link midpoint
PLL phase-locked loop
PMSM permanent magnet synchronous machine
PWM pulse-width modulation
R equivalent series resistance ESR
RFOC rotor-flux-oriented control
SFOC stator-flux-oriented
SM synchronous machine
SRS symmetrical regular sampling 10 NOMENCLATURE
List of Acronyms and Names
SRS-PWM symmetrical regular sampling pulse-width modulation
SRS-ZSS-PWM symmetrical regular sampling pulse-width modulation with added
third harmonic
SVM space vector modulation
THD total harmonic distortion
UPF unity power factor
V-DPC voltage-based direct power control
VF-DPC Virtual-flux-based direct power control
VFOC Virtual-flux-oriented control
VOC voltage-oriented
VSC voltage source converter
x terminal of machine side converter (x = a, b, c) MC
x terminal of grid side converter ( x = a, b, c) GC
2L VSC two-level voltage source converter
3L-NPC VSC three-level neutral-point-clamped voltage source converter
46QB− C 4 quadrant thyristor converter




Generic Variable Usage Conventions
Variable
Meaning
Format
x instantaneous value of quantity x
x estimated value of quantity x
x average value of quantity x in a sampling time
ˆXX, rms value and amplitude of quantity x
ˆXX, rmplitude of fundamental component of quantity x 11
ˆ, rms value and amplitude of harmonic components of quantity x hh
Y Sx ψ complex vector in Y coordinate system (Y = S (stator), Y = R (rotor), Y = S
S Sψ ψ(stator flux vector), Y = (rotor flux vector), Y = (air gap flux vector), gR
v (grid voltage vector at PCC), Y = K (arbitrary coordinate system)) PCC
Yx complex vector of fundamental components in coordinate system of Y 1
YYYx , x x real and imaginary components of in a stationary coordinate system of Y α β Yx , x x of Y 11α β 1
YY Yx , x x real and imaginary components of in a rotating coordinate system of Y dq Yx , x x of Y 11 1
GGGGGGGGGG