162 Pages
English
Gain access to the library to view online
Learn more

Investigation of microbial groups involved in the uptake of atmospheric trace gases in upland soils [Elektronische Ressource] / Jennifer Pratscher. Betreuer: Ralf Conrad

-

Gain access to the library to view online
Learn more
162 Pages
English

Description

Investigation of microbial groups involved in the uptake of atmospheric trace gases in upland soils Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Biologie der Philipps-Universität Marburg vorgelegt von Jennifer Pratscher aus Jülich Marburg/Lahn 2010 Die Untersuchungen zur folgenden Arbeit wurden von Januar 2008 bis Oktober 2010 am Max-Planck-Institut für terrestrische Mikrobiologie in Marburg unter Anleitung von Prof. Dr. Ralf Conrad durchgeführt. Vom Fachbereich Biologie der Philipps-Universität Marburg als Dissertation angenommen am: 28.10.2010 Erstgutachter: Prof. Dr. Ralf Conrad Zweitgutachter: Prof. Dr. Erhard Bremer Tag der Disputation: 13.01.2011 Publication list Die in dieser Dissertation beschriebenen Ergebnisse sind in folgenden Publikationen veröffentlicht bzw. zur Veröffentlichung vorgesehen: 1. Pratscher, J., Dumont, M.G., Conrad, R. (2010) Assimilation of acetate by the putative atmospheric methane oxidizing clade USC α. (submitted to Nature Geoscience in October 2010) 2. Pratscher, J., Dumont, M.G., Conrad, R. (2010) Ammonia oxidation coupled to CO fixation by Archaea and Bacteria in an agricultural soil. (submitted to 2Proceedings of the National Academy of Sciences of the United States of thAmerica on 30 July 2010) 3. Constant, P.

Subjects

Informations

Published by
Published 01 January 2011
Reads 20
Language English
Document size 14 MB

Exrait




Investigation of microbial groups involved in the uptake of
atmospheric trace gases in upland soils






Dissertation


zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

dem Fachbereich Biologie der Philipps-Universität Marburg

vorgelegt von








Jennifer Pratscher
aus Jülich




Marburg/Lahn 2010 Die Untersuchungen zur folgenden Arbeit wurden von Januar 2008 bis Oktober 2010 am
Max-Planck-Institut für terrestrische Mikrobiologie in Marburg unter Anleitung von Prof. Dr.
Ralf Conrad durchgeführt.






























Vom Fachbereich Biologie der Philipps-Universität Marburg als Dissertation angenommen
am: 28.10.2010

Erstgutachter: Prof. Dr. Ralf Conrad
Zweitgutachter: Prof. Dr. Erhard Bremer

Tag der Disputation: 13.01.2011 Publication list

Die in dieser Dissertation beschriebenen Ergebnisse sind in folgenden Publikationen
veröffentlicht bzw. zur Veröffentlichung vorgesehen:

1. Pratscher, J., Dumont, M.G., Conrad, R. (2010) Assimilation of acetate by the
putative atmospheric methane oxidizing clade USC α. (submitted to Nature
Geoscience in October 2010)

2. Pratscher, J., Dumont, M.G., Conrad, R. (2010) Ammonia oxidation coupled to
CO fixation by Archaea and Bacteria in an agricultural soil. (submitted to 2
Proceedings of the National Academy of Sciences of the United States of
thAmerica on 30 July 2010)

3. Constant, P., Chowdhury, S.P., Pratscher, J., Conrad, R. (2010)
Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are
widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environ
Microbiol 12: 821-829.









"There is a theory which states that if ever anyone discovers exactly what
the Universe is for and why it is here, it will instantly disappear and be
replaced by something even more bizarre and inexplicable. - There is
another theory which states that this has already happened."

Douglas Adams - The Restaurant at the End of the Universe
Contents


Contents 


Abbreviations .................................................................................................. 4
Zusammenfassung ......................................................................................... 6
Summary.......................................................................................................... 8

I. Introduction ................................................................................................ 10
I.1 General introduction......................................................................................................10
I.2 Methane in the atmosphere and its uptake into upland soils.........................................13
I.3 CO fixation by ammonia oxidizing prokaryotes in terrestrial environments ..................15 2
I.4 Biological uptake of atmospheric H ..............................................................................18 2
I.6 Objectives of this study.................................................................................................20
I.6 References ...................................................................................................................21

II. Materials and methods............................................................................. 26
II.1 Chemicals and gases...................................................................................................26
II.2 Cultures and media......................................................................................................26
II.3 Environmental samples and sampling procedures.......................................................28
II.3.1 Marburg forest soil (MF) .......................................................................................28
II.3.2 Rauischholzhausen agricultural soil (RH) .............................................................28
II.4 Chemical analyses.......................................................................................................28
II.4.1 Determination of pH in soil samples .....................................................................28
II.4.2 Gravimetric determination of soil moisture content ...............................................28
II.4.3 Determination of ammonium.................................................................................29
II.4.4 Analysis of nitrate and nitrite.................................................................................29
II.4.5 Quantification of acetate .......................................................................................30
II.4.7 Calculation of the atmospheric methane oxidation rate (V )...............................31 atm
13II.4.8 Determination of CO .........................................................................................32 2
II.5 Nucleic acid extraction.................................................................................................32
II.5.1 Marburg forest soil................................................................................................32
II.5.2 Rauischholzhausen agricultural soil (SDS) ...........................................................34
II.5.3 Pure cultures ........................................................................................................35
II.5.4 Purification of RNA ...............................................................................................35
II.6 Amplification of DNA and cDNA by PCR......................................................................36
II.6.1 Amplification of pmoA...........................................................................................37
II.6.2 Amplification of amoA...........................................................................................38
II.6.3 Amplification of accA ............................................................................................38
II.6.4 Amplification of hydB ............................................................................................39
II.6.5 Amplification of archaeal and bacterial 16S rRNA genes and transcripts .............39
II.6.6 Gelelectrophoresis and purification.......................................................................39
II.6.7 Quantification........................................................................................................40
II.6.8 T-RFLP analysis ...................................................................................................40
II.7 Stable isotope probing (SIP) of nucleic acids...............................................................40
II.7.1 Incubation for SIP .................................................................................................41
II.7.2 RNA stable isotope probing ..................................................................................42
II.7.3 DNA stablerobing ..................................................................................45
II.8 Quantitative PCR (qPCR) ............................................................................................46
II.8.1 Solutions for qPCR ...............................................................................................46
II.8.2 qPCR assays........................................................................................................47
II.9 Phylogenetic analyses .................................................................................................50
II.9.1 Cloning .................................................................................................................50
II.9.2 Sequencing...........................................................................................................52
1Contents


II.9.3 Phylogenetic analyses..........................................................................................53
II.10 Fluorescence in situ hybridization (FISH)...................................................................53
II.10.1 Generation of RNA polynucleotide probes – in vitro transcription .......................53
II.10.2 Generation of expression clones as controls for FISH ........................................54
II.10.3 Separation of microbial cells from soil.................................................................55
II.10.4 Fixation of cells and environmental samples.......................................................56
II.10.5 RING-FISH targeting pmoA of USC α..................................................................57
II.10.6 CARD-FISH........................................................................................................64
II.10.7 Fluorescence microscopy ...................................................................................71
II.11 Enrichment of Upland Soil Cluster α ..........................................................................72
II.11.1 Soil substrate membrane system (SSMS) ..........................................................72
II.11.2 Incubation of Marburg forest soil with alternating acetate and CH treatments ...74 4

III. USC α in upland forest soil...................................................................... 75
III.1 Assimilation of acetate by the putative atmospheric methane oxidizing clade USC α ..75
III.1.1 Abstract ...............................................................................................................75
III.1.2 Introduction..........................................................................................................75
III.1.3 Results ................................................................................................................76
III.1.4 Discussion ...........................................................................................................81
III.1.5 Materials and methods ........................................................................................83
III.1.6 Supplementary material.......................................................................................87
III.1.7 References ..........................................................................................................89
III.2 RING-FISH and enrichment of Upland Soil Cluster α in Marburg forest soil................91
III.2.1 RING-FISH and cell sorting of Upland Soil Cluster α ...........................................91
III.2.3 Cell sorting.........................................................................................................100
III.2.2 Enrichment approaches of Upland Soil Cluster α ..............................................101

IV. Ammonia oxidation coupled to CO fixation by Archaea and Bacteria 2
in an agricultural soil.................................................................................. 106
IV.1 Abstract ....................................................................................................................106
IV.2 Introduction...............................................................................................................106
IV.3 Results .....................................................................................................................108
IV.4 Discussion................................................................................................................113
IV.5 Materials and methods .............................................................................................115
IV.6 Supplementary material............................................................................................117
IV.7 References...............................................................................................................123

V. Streptomycetes contributing to atmospheric molecular hydrogen soil
uptake are widespread and encode a putative high-affinity [NiFe]-
hydrogenase................................................................................................ 127
V.1 Summary...................................................................................................................127
V.2 Introduction................................................................................................................127
V.3 Results and discussion..............................................................................................129
V.4 Experimental procedures...........................................................................................136
V.5 Supplementary material.............................................................................................140
V.6 References................................................................................................................141

VI. Discussion ............................................................................................. 144
VI.1 Upland Soil Cluster α in Marburg forest soil..............................................................144
VI.1.1 Methane oxidation and use of alternative carbon sources.................................144
VI.1.2 Applicability of RING-FISH with coupled cell sorting to target cells of USC α.....144
VI.1.3 Enrichment strategies used for USC α ...............................................................146
VI.1.4 Outlook..............................................................................................................146
2Contents


VI.2 Autotrophic CO fixation coupled to ammonia oxidation of archaea and bacteria in an 2
agricultural soil.................................................................................................................147
VI.3 Localized expression of hydB in H -oxidizing streptomycetes in soil ........................148 2
VI.4 General discussion & outlook ...................................................................................149
VI.5 References...............................................................................................................152

Contribution to national and international conferences ........................ 154
Abgrenzung der Eigenleistung.................................................................. 155
Curriculum vitae.......................................................................................... 156
Danksagung ................................................................................................ 157
Erklärung ..................................................................................................... 158

3Abbreviations


Abbreviations
°C degree Celsius
-6µ micro (10 )
AOA ammonia oxidizing archaea
AOB ammonia oxidizing bacteria
bpbase pairs
CARD-FISH catalyzed reporter deposition - fluorescence in situ hybridization
CsCl cesium chloride
CsTFA cesiumtrifluoroacetate
CTAB cetyl trimethylammonium bromide
CTP cytidine triphosphate
Cy3carbocyanine 3
DAPI 4', 6-diamidino-2-phenylindol-dihydrochloride
dATP deoxyadenosine triphosphate
dCTP deoxycytidinetriphosphate
dGTPdeoxyguanosine triphosphate
DIGdigoxigenin
DNA deoxyribonucleic acid
DSM DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen
GmbH, Braunschweig
dTTP deoxythymidinetriphosphate
EDTA ethylenediaminetetraacetic acid
et al. et alteri
FA formamide
FAM carboxyfluoresceine
Fig. figure
FISH fluorescence in situ hybridization
g gram
GTP guanosinetriphosphate
kb kilobase
l litre
M molar(mol/l)
-3m milli(10 )
MF Marburg forest soil
min minute
MOB methane oxidizing bacteria
MW molecularweight
-9nano (10 )
NCIMB TheNational Collection of Industrial and Marine Bacteria,
TorryResearch Station, Aberdeen, Scotland, UK
nD-TC refractive index
nt. nucleotide
ON over night
4Abbreviations


-12p pico (10 )
PBS phosphate buffered saline
PCR polymerase chainreaction
PFA paraformaldehyde
pH negative common logarithm of the molar concentration of dissolved hydronium ions
PLFA phospholipid fatty acids
qPCR quantitative polymerase chain reaction
RH Rauischholzhausen agricultural soil
RING-FISH recognition of individual genes – fluorescence in situ hybridization
RNA ribonucleic acid
RNase ribonuclease
rpm rounds perminute
rRNA ribosomale RNA
RTroom temperature
SDS sodium dodecyl sulfat
SIP stable isotope probing
sp. species
SSMS soil substrate membrane system
Tab. table
T melting temperature of oligonucleotides m
T-RF terminal restriction fragment
T-RFLP terminal restriction fragment length polymorphism
Tris tris(hydroxymethyl)aminomethane
USC αupland soilcluster α
UTP uridinetriphosphate
V volt
v/v volume per volume
Vol. volume
w/v weight per volume




5Zusammenfassung


Zusammenfassung
Atmosphärischen Spurengasen kommt eine Führungsrolle in den derzeitigen klimatischen
Veränderungen zu. Ein signifikanter Anteil am Austausch von atmosphärischen Spurengasen
findet an der Schnittstelle zwischen Atmosphäre und „upland soils“ statt. Allerdings sind die
für diese Dynamiken verantwortlichen Mikroorganismen nicht vollständig identifiziert und
erforscht. Diese Arbeit befasst sich deshalb mit der Untersuchung mikrobieller Gruppen in
terrestrischen Habitaten, die in die Aufnahme von atmosphärischen Spurengasen (CH , CO , 4 2
H ) involviert sind, und zwar das potentiell atmosphärisches Methan oxidierende „upland soil 2
cluster α“ (USC α), die autotrophen Ammonium-oxidierenden Archaeen (AOA) und die
Wasserstoff-oxidierenden Streptomyzeten. Verschiedene Methoden wurden angewandt, um
die Aufnahme von markiertem Substrat in diese mikrobiellen Gruppen zu untersuchen und die
Expression ihrer funktionellen Marker-Gene zu analysieren. Dabei handelte es sich um pmoA
für die hoch-affine membran-gebundene (partikuläre) Methan-Monooxygenase von USC α,
amoA für die Ammonium-Monooxygenase der AOA und hydB für die hoch-affine [NiFe]-
Hydrogenase von Streptomyces sp. PCB7.
Trotz der Annahme, dass es sich bei dem “upland soil cluster α“ (USC α) in
Waldböden um methanotrophe Bakterien handelt, die an atmosphärische Methan-
konzentrationen angepasst sind und denen demnach eine grundlegende Rolle in der
Aufnahme und Beseitigung dieses Treibhausgases aus der Atmosphäre zuteil wird, war noch
ungeklärt, ob diese Mikroorganismen ihren gesamten Energie- und Kohlenstoffbedarf mit
Methan decken können oder zusätzlich auf andere Kohlenstoffquellen angewiesen sind.
Stabile Isotopenbeprobung wurde angewandt, um den Einbau von markiertem CH und 4
Acetat in Nukleinsäuren von USC α zu untersuchen. Die Ergebnisse dieser Studie weisen
darauf hin, dass USC α atmosphärisches CH möglicherweise nur als zusätzliche 4
Energiequelle oder Überlebensstrategie nutzt, und stattdessen andere
Kohlenstoffverbindungen, z.B. Acetat, zum Wachstum verwendet. Somit repräsentiert USC α
eher fakultative als obligate Methanotrophe. Die Anwendung von CARD-FISH, spezifisch für
pmoA Transkripte, ermöglichte zudem die erste Visualisierung von USC α in situ. Diese
Resultate erweitern unseren Wissensstand und das Verständnis in Bezug auf „upland soils“
als Senke für atmosphärisches Methan und die Mikroorganismen, die für diese Prozesse
verantwortlich sind.
Autotrophe Bakterien wurden lange Zeit alleinverantwortlich für die Ammonium-
Oxidation gehalten. Doch inzwischen liegen zunehmend Studien vor, die auf eine zusätzliche
Beteiligung von Archaea an diesem Prozess hinweisen. Allerdings war bis heute unbekannt,
ob Ammonium-oxidierende Archaeen im Boden CO assimilieren können und zu welchem 2
Grad sie funktionell aktiv sind. Stabile Isotopenbeprobung von Nukleinsäuren unter
13Verwendung von CO demonstrierte eine aktive Beteiligung der Ammonium-oxidierenden 2
Archaeen an der mikrobiellen Ammonium-Oxidation in einem Feldboden, verbunden mit
-Fixierung, vermutlich über den Hydroxypropionat-Hydroxybutyrat-Zyklus. autotropher CO2
6