Linking a fluidized bed combustion reactor with an externally fired micro gas turbine [Elektronische Ressource] / submitted by Tristan Vincent
156 Pages
English

Linking a fluidized bed combustion reactor with an externally fired micro gas turbine [Elektronische Ressource] / submitted by Tristan Vincent

-

Downloading requires you to have access to the YouScribe library
Learn all about the services we offer

Description

Linking a Fluidized Bed Combustion Reactor with an Externally Fired Micro Gas TurbineDissertationto attain the academic title PhDfrom the Faculty of Mechanical Engineering and Marine TechnologyUniversity of Rostock Submitted by Graduate Engineer Tristan Vincent Rostock 2008urn:nbn:de:gbv:28-diss2009-0091-4Kopplung einer Wirbelschichtfeuerungmit einer extern gefeuerten MikrogasturbineDissertationzurErlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) der Fakultät für Maschinenbau und Schiffstechnik der Universität Rostock vorgelegt von Dipl.-Ing. Tristan Vincent Rostock 2008 Permitted as dissertation by the University of Rostock, Faculty for Mechanical Engineering and Marine Technology: Submission date: 10.12.08 Defence date: 06.05.09 Als Dissertation genehmigt von der Fakultät für Maschinenbau und Schiffstechnik der Universität Rostock: Tag der Einreichung: 10.12.08 Tag der Verteidigung: 06.05.09 Expert reviewers (Gutachter): Prof. Dr.-Ing. habil. Dieter Steinbrecht, University of Rostock, Germany Prof. Dr.-Ing. habil. Jürgen Karl, Technical University of Graz, Austria Prof. Dr.-Ing. Klaus Dielmann, FH Aachen, University of Applied Sciences, Germany Preface IPrefaceThis doctoral thesis was written during my occupation as scientific colleague at the University of Rostock, Faculty of Mechanical Engineering and Marine Technology, Chair of Energy Systems and Turbo Machinery in Germany. I would like to thank my mentor Prof.

Subjects

Informations

Published by
Published 01 January 2008
Reads 69
Language English
Document size 6 MB

Linking a Fluidized Bed Combustion Reactor
with an
Externally Fired Micro Gas Turbine
Dissertation
to attain the academic title
PhD
from the Faculty of Mechanical Engineering and Marine Technology
University of Rostock
Submitted by
Graduate Engineer Tristan Vincent
Rostock 2008
urn:nbn:de:gbv:28-diss2009-0091-4Kopplung einer Wirbelschichtfeuerung
mit einer
extern gefeuerten Mikrogasturbine
Dissertation
zur
Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)
der Fakultät für Maschinenbau und Schiffstechnik
der Universität Rostock
vorgelegt von
Dipl.-Ing. Tristan Vincent
Rostock 2008 Permitted as dissertation by the University of Rostock, Faculty for Mechanical Engineering
and Marine Technology:
Submission date: 10.12.08
Defence date: 06.05.09
Als Dissertation genehmigt von der Fakultät für Maschinenbau und Schiffstechnik der
Universität Rostock:
Tag der Einreichung: 10.12.08
Tag der Verteidigung: 06.05.09
Expert reviewers (Gutachter):
Prof. Dr.-Ing. habil. Dieter Steinbrecht, University of Rostock, Germany
Prof. Dr.-Ing. habil. Jürgen Karl, Technical University of Graz, Austria
Prof. Dr.-Ing. Klaus Dielmann, FH Aachen, University of Applied Sciences, Germany Preface I
Preface
This doctoral thesis was written during my occupation as scientific colleague at the University
of Rostock, Faculty of Mechanical Engineering and Marine Technology, Chair of Energy
Systems and Turbo Machinery in Germany.
I would like to thank my mentor Prof. Dr.-Ing. habil. Dieter Steinbrecht and the other expert
reviewers Prof. Dr.-Ing. habil. Jürgen Karl and Prof. Dr.-Ing. Klaus Dielmann for the valuable
advice and helpful support essential for the accomplishment of this research work.
I owe particular thanks to Dr.-Ing. Rolf Strenziok and Dipl.-Ing. Eldor Backhaus and all my
other colleagues at the Faculty of Mechanical Engineering and Marine Technology for their
dedication and constructive support.
I would also like to thank my wife Maren and family, both near and far, for their patience and
support, without which this dissertation would not have been possible.
Rostock, 10.12.08 Tristan Vincent Contents II
Tristan Vincent
Linking a Fluidized Bed Combustion Reactor with an
Externally Fired Micro Gas Turbine
Contents
II List of Figures……..……………………………………………………… V
III List of Tables……………………………………………………………… IX
IV Nomenclature….………………………………………………………….. X
1 Introduction……………………………………………………………… 1
1.1 Research Motivation and Goals…………………………………………… 4
1.2 Small Scale Biomass Electricity Generation……… ……………………… 6
1.2.1 Stirling Engines….………………………………………………………… 6
1.2.2 Steam Expansion Engines….……………………………………………… 7
1.2.3 Organic Rankine Cycle…………………………………………………… 7
1.2.4 Biogas Plants…….………………………………………………………… 8
1.2.5 Externally Fired Gas Turbines...…………………………………………… 9
1.2.6 Summary and Recommendations…………..……………………………… 11
2 Gas Turbines….…………………………………………………………. 12
2.1 Ideal Brayton (Joule) Cycle………………………………………………… 13
2.2 Real Gas Turbine Cycle….………………………………………………… 14
2.3 Gas Turbine Cycles..……………………………………………………… 16
2.3.1 Gas and Steam Combined Cycle…………………………………………… 16
2.3.2 Recuperated Gas Turbine Cycle…………………………………………… 16
2.3.3 Externally Fired Gas Turbine Cycle..……………………………………… 18
3 Externally Fired Gas Turbines: Research & Development….………… 21
3.1 Externally Fired Combined Cycle………………………………………… 21
3.2 Summary and Recommendations…..……………………………………… 23
4 Biomass Fuelled Externally Fired Gas Turbines……………………… 24
4.1 Biomass Combustion Problematic………………………………………… 24
4.2 Supplementary Firing…………….………………………………………… 26
4.3 Research and Demonstration Projects..…………………………………… 28
4.3.1 Biomass EFGT with Circulating Fluidized Bed…………………………… 28Contents III
4.3.2 Biomass EFGT with Fuel Dryer…………………………………………… 28
4.3.3 Siebenlehn 2-2.3 MWe Biomass EFCC…….…………………………….. 29
4.3.4 AFBC Externally Fired Humid Air Turbine Cycle………………………… 30
4.3.5 Vrije University Brussels 500 kWe Biomass EFHAT…..………………… 30
4.4 Summary and Recommendations………………………………………… 31
5 Externally Fired Micro Gas Turbines: State of the Art………………… 32
5.1 Research and Demonstration Projects………………………………….…. 32
5.1.1 Vrije University of Brussels EFMGT…………………………………….. 32
5.1.2 University of Genoa EFMGT……………………………………………. 33
5.1.3 Technical University Munich and ZAE Bayern EFMGT………………… 34
5.1.4 Talbott’s EFMGT Biomass Generator BG 100........................................... 35
5.2 SFBC-EFMGT Plant Operation and Control………..……………………… 38
5.3 EFMGT Market Potential…………………………….…………………… 42
5.3.1 Availability and Costs of Biomass Resources in Europe……….………… 42
5.3.2 Specific Investment Costs for an EFMGT Plant…………………………… 44
5.3.3 EFMGT Electricity Feed-in Tariff………………………………………… 47
5.3.4 EFMGT Investment Costs………...…….………………………………… 47
5.4 EMGT Environmental Aspects………………………..…………………… 49
5.5 Summary and Recommendations…………………….…………………… 49
6 High Temperature Air Heaters….……………………………………… 51
6.1 Heat Exchanger Classification…………….……………………………… 51
6.2 Metallic High Temperature Heat Exchangers……………………………… 51
6.2.1 Metallic Heat Exchanger Material Properties………..…………………… 52
6.2.2 Metallic Heat Exchanger Material Availability…………………………… 54
6.2.3 Westinghouse Fluidized Bed Heat Exchanger Material Tests……………… 55
6.3 Ceramic Heat Exchangers………………………………………………… 56
6.3.1 Ceramic Heat Exchangers: State of the Art………………………………… 57
6.3.2 Ceramic Composite Heat Exchangers……………………………………… 59
6.3.3 Metal Matrix Composites………………………………………………… 60
7 University of Rostock SFBC Heat Exchanger…………………….…… 61
7.1 Approach………….………………………………………………………… 61
7.2 Fluidized Bed Heat Exchanger Design…………………………………… 64
7.2.1 Design Concept…………………………………………………………… 64
7.2.2 Thermodynamic Calculation……………………………………………… 64Contents IV
7.2.3 Operation Characteristics…..……………………………………………… 69
7.2.4 Construction Materials……………….…………………………………… 70
7.3 SFBC-EFMGT Heat Exchanger Prototype 1……………………...……… 71
7.4 GT Heat Exchanger Prototype 2………….…………………… 73
8 Experimental Results and Discussion………….……………………….. 75
8.1 Heat Exchanger 1 Tests…………………….……………………………… 76
8.1.1 Preliminary Heat Exchanger 1 Test………………………………………… 76
8.1.2 Straw Pellets Heat Exchanger Test………….……………………………. 78
8.1.3 SFBC-EFMGT External Compressor Tests ………….……….…………… 79
8.1.5 Heat Exchanger 1: Summary and Conclusions…………………………… 85
8.2 Heat Exchanger 2 Tests………….………………………………………… 87
8.2.1 Preliminary Heat Exchanger 2 Test………………………………………. 87
8.2.2 SFBC-EFMGT Test Series………………………………………………… 90
8.2.2.1 GT Test 1……………………………………..……………… 91
8.2.2.2 SFBC-EFMGT Test 2………………………………………….…………… 92
8.2.2.3 GT Test 3………………………………………..…………… 97
9 SFBC-EFMGT Theoretical Modelling……………………….………… 101
9.1 GT Heat Exchanger 1 Simulation………………… ………… 101
9.2 SFBC-EFMGT Heat Exchanger 2 Simulation ……………….…………… 103
9.2.1 Heat Exchanger 2 Preliminary Test Model………………………………… 103
9.2.2 SFBC-EFMGT Ebsilon Process Simulation ………………………..………104
9.2.3 GT Plant Integration and Cycle Efficiency……..…….……… 112
10 Summary and Perspectives………………….…………………………… 117
Bibliography……………………………………………………………………………… i
Appendix I: Heat Exchanger 1 Test Data……………………...…………….…………… xi
Appendix II SFBC-EFMGT Heat Exchanger 2 Test Data…………………………..…… xiv
Appendix III SFBC-EFMGT Measurement Instrumentation………………………………xviiiList of Figures V
List of Figures
Fig. 1.1: Renewable electricity generation in Germany between 1995 and 2006…………….… 2
Fig. 1.2: Distribution of renewable energy generation in Germany 2006…………………….… 3
Fig. 1.3: SFBC-EFMGT test configuration at the University of Rostock…………………….… 4
Fig. 1.4: Principle of the two cylinder SOLO Stirling 161 engine…………………………….. 6
Fig. 1.5: Spilling steam expansion engine…………………………………………………….… 7
Fig. 1.6: Organic Rankine Cycle……………………………………………………………….. 7
Fig. 1.7: Typical biogas plant in Germany……………………………………………………… 8
Fig. 1.8: Jenbacher type 2 gas engines…………………………………………………………. 9
Fig. 1.9: Tabott’s BG 100 externally fired micro gas turbine CHP system……………………. 9
Fig. 1.10: Typical efficiencies of small scale biomass electricity generation…………………… 10
Fig. 1.11: Theoretical electrical efficiency of proposed biomass fuelled EFMGT cycles……... 10
Fig. 2.1: Cross section of a micro gas turbine………………………………………………...... 12
Fig. 2.2: Closed cycle ideal Brayton gas turbine flowchart and T-s diagram………………...... 13
Fig. 2.3: Ideal thermal efficiency as a function of pressure ratio………………………………. 14
Fig. 2.4: Real open gas turbine cycle and T-s diagram……………………………………….… 14
Fig. 2.5: Open gas turbine efficiency with respect to temperature and pressure ratio…………. 15
Fig. 2.6: Simplified gas and steam combined cycle power plant schema…………………….... 16
Fig. 2.7: Recuperated micro gas turbine cycle………………………………………………… 17
Fig. 2.8: Recuperated gas turbine T-s diagram………………………………………………… 17
Fig. 2.9: Externally fired micro gas turbine cycle……………………………………………... 18
Fig. 2.10: Externally fired gas turbine in T-s diagram……………………………………….... 19
Fig. 3.1a: Externally fired combined cycle power plant………………………………………. 22
Fig. 3.1b: Externally fired repowering………………………………………………………… 22
Fig. 3.2: EFCC with allothermal biomass steam gasification for topping combustion………... 22
Fig. 4.1: Combustion temperature limits for selected biomass fuels…………………………... 24
Fig. 4.2: Flow sheet of a biomass EFGT with supplementary firing…………………………... 27
Fig. 4.3: Biomass fuelled atmospheric CFB with external bed heat exchanger……………….. 28
Fig. 4.4: Flow sheet of the wet EFGT cycle………………………………………………….… 29
Fig. 4.5: EFHAT plant layout Vrije University Brussels………………………………………. 31
Fig. 5.1: Plant layout VUB EFMGT…………………………………………………………… 32
Fig. 5.2: University of Genoa EFMGT plant layout…………………………………………… 33List of Figures VI
Fig. 5.3: Technical University Munich and ZAE Bayern EFMGT……………………………… 34
Fig. 5.4: Heat transfer coefficients for smooth and indented tubes............................................. 35
Fig. 5.5: Talbott’s BG 100 EFMGT patent diagram.................................................................... 36
Fig. 5.6: Talbott’s BG 100 EFMGT and combustion chamber.................................................... 36
Fig. 5.7: Combustion chamber with heat exchanger…………………………………………… 37
Fig. 5.8: Talbott’s externally fired micro gas turbine…………………………………………… 37
Fig. 5.9: Bypass controlling system for an EFGT plant………………………………………… 38
Fig. 5.10: Configuration of a proportional integral derivative controller……………………… 39
Fig. 5.11: EFMGT system with recuperator and heat exchange………………………………… 40
Fig. 5.12: University of Rostock SFBC-EFMGT test bed bypass system layout ……..………… 41
Fig. 6.1: Principle of heat exchanger classification by current flow…………………………… 51
Fig. 6.2: Shell and tube heat exchanger………………………………………………………… 55
Fig. 6.3: Westinghouse CFBC in-bed heat exchanger test……………………………………… 56
Fig. 6.4: Regenerative Pebble Heater concept…………………………………………………. 57
Fig. 6.5: Babcock and Wilcox bayonet tube heat exchanger from DuPont……………………… 59
Fig. 6.6: Ceramic matrix composite heat exchanger research…………………………………… 60
Fig. 7.1: Principle of the SFBC in-bed heat exchanger………………………………………… 64
Fig. 7.2: Schematic temperature diagram of a SFBC in-bed heat exchanger…………………… 65
Fig. 7.3: SFBC-EFMGT in-bed heat exchanger prototype 1…………….……………………… 72
Fig. 7.4a: Heat exchanger prototype 2 tube distribution system………………………………… 74
Fig. 7.4b: Heat exchanger prototype 2 with four parallel tubes ………………………………… 74
Fig. 8.1: Heat exchanger 1 preliminary test configuration………..……………………………. 76
Fig. 8.2: Temperature diagram preliminary heat exchanger test ……………………………… 77
Fig. 8.3: Heat exchanger 1 in the SFBC reactor during operation……………………………… 78
Fig. 8.4: Straw pellets feedstock………………………………………………………………… 78
Fig. 8.5: Packaged EFMGT……….…………………………………………………………… 79
Fig. 8.6: SFBC-EFMGT test configuration with external compressor station………………… 80
Fig. 8.7: SFBC-EFMGT temperature diagram …………….…………………………………… 81
Fig. 8.8: Heat exchanger output with respect to air mass flow………………………………… 81
Fig. 8.9: Heat transfer coefficient with respect to air mass flow………………………………. 82
Fig. 8.10: Heat transfer effectiveness with respect to air mass flow…………………………… 82
Fig. 8.11: Number of transfer units with respect to air mass flow……………………………… 83
Fig. 8.12: Heat exchanger 1 pressure drop with respect to air mass flow……………………… 83
Fig. 8.13: Heat exchanger 1 friction factor with respect to air mass flow……………………… 84List of Figures VII
Fig. 8.14: EFMGT external compressor operation……………………………………………………… 84
Fig. 8.15: Heat exchanger 2 preliminary test configuration…………………………………… 86
Fig. 8.16: Measured heat exchanger output with respect to air mass flow……………………… 87
Fig. 8.17: Heat exchanger 2 pressure drop with respect to air ma… 87
Fig. 8.18: Heat exchanger 2 friction factor with respect to air mass flow……………………… 88
Fig. 8.19: Predicted heat exchanger pressure drop with respect to air mass flow……….……… 88
Fig. 8.20: Predicted heat exchanger output respective to inlet temperature and air mass flow... 89
Fig. 8.21: Predicted outlet temperature with respect to inlet temass flow…… 89
Fig. 8.22: Heat exchanger 2 SFBC-EFMGT test-bed configuration…………………………… 89
Fig. 8.23a: EFMGT and SFBC reactor………………………………………………………… 90
Fig. 8.23b SFBC fluidized bed heat exchanger 2……………………………………………… 90
Fig. 8.24: SFBC-EFMGT temperature distribution with respect to turbine speed, test 1……… 91
Fig. 8.25: Heat exchanger compressor pressure with respect to turbine speed, test 1…………… 91
Fig. 8.26: EFMGT generator power output with respect to turbine speed, test 1……………… 92
Fig. 8.27: SFBC-EFGT temperature distribution with respect to turbine speed, test 2………… 92
Fig. 8.28: SFBC heat transfer coefficient with respect to air mass flow, heat exchanger 2…… 93
Fig. 8.29: EFMGT Electricity generation with respect to turbine speed……….……………… 94
Fig. 8.30: EFMGT compressor pressure with respect to turbine speed………………………… 94
Fig. 8.31: Heat exchanger pressure drop with respect to turbine speed……..…………………. 95
Fig. 8.32: Heat exchanger output with respect to turbine speed ………………………………. 95
Fig. 8.33: Heat exchanger heat transfer coefficient with respect to turbine speed……………… 96
96Fig. 8.34: Number of transfer units (NTU) and heat exchanger effectiveness ()………………
Fig. 8.35: Temperature difference between fluidized bed and heat exchanger outlet…………… 97
Fig. 8.36: Temperature strip chart of the EFMGT-SFBC test…………………………………. 98
Fig. 8.37: EFMGT system pressure distribution with respect to turbine speed………………… 98
Fig. 8.38: EFMGT system pressure drop with respect to turbine speed………………………… 99
Fig. 8.39: EFMGT air mass flow with respect to turbine speed………………………………… 99
Fig. 8.40: Heat exchanger output from SFBC energy balance………………………………… 100
Fig. 9.1: SFBC-EFMGT test-bed simulation diagram................................................................. 101
Fig. 9.2: SFBC-EFMGT test-bed simulation h-s diagram …………….……………................. 102
Fig. 9.3: SFBC-EFMGT test-bed simulation: Thermal efficiency and electrical output………… 103
Fig. 9.4: Heat exchanger outlet temperature with respect to air mass flow……………………… 104
Fig. 9.5: Heat transfer in the recuperator with respect to a turbine speed of 96 000 rpm……… 107
Fig. 9.6: Heat transfer in the heat exchanger with respect to a turbine speed of 89 000 rpm….. 107