186 Pages
English

Modélisation électromagnétique des tissus humains : application aux interactions entre le corps humain et les antennes dans le contexte des réseaux BAN, Electromagnetic modelling of human tissues and its application on the interaction between antenna and human body in the BAN context

-

Gain access to the library to view online
Learn more

Description

Sous la direction de Jean-Marc Laheurte
Thèse soutenue le 08 juillet 2009: Paris Est
Les réseaux BAN (Body Area Network) révolutionnent le concept de la surveillance et de la prise en charge à distance de la santé du patient. Le BAN fournit des informations sur l’état de santé du patient en temps réel quelque soit l’endroit où il se trouve. Dans le « télé monitoring », des capteurs de mouvement, de respiration ou du rythme cardiaque placés à l’intérieur ou sur le corps humain transmettent des données via le réseau sans fil constituant le BAN, une antenne étant associée à chaque nœud du réseau. La communication peut être in/on, on/on ou on/off selon que les antennes sont placées à l’intérieur, sur ou à l’extérieur du corps. Le développement des BAN nécessite la réalisation de modèles (ou fantômes) simulant au mieux les propriétés électromagnétiques du corps humain. Des antennes portables, miniaturisées doivent être réalisées avec des contraintes d’intégration d’une part (aux vêtements, à des objets type montre ou badge), des contraintes de résistance ou de prise en compte de l’influence du corps d’autre part. La réduction de l’impact des antennes sur les tissus en terme de SAR (Specific Absorption Rate) doit également être considérée. Dans ce travail, l’objectif est de développer des fantômes valables pour les communications dans et sur le corps. Les matériaux de base sélectionnés sont d’origine biologique (biocéramiques et biopolymères) avec des propriétés proches de celles des tissus humains. Ces fantômes étant biocompatibles, ils sont essentiellement non toxiques alors que les fantômes usuels le sont en général. D’autre part, différents types d’antennes conformables, fonctionnant dans la bande ISM 2.4 GHz ont été développées et étudiées dans la perspective du BAN. Les antennes voient leur adaptation et leur efficacité chuter au contact ou à proximité du corps, ce qui constitue un écueil majeur pour établir une bonne communication. Différentes méthodes permettant de réduire l’influence du corps (plan de masse à l’arrière, surface haute impédance, feuille de ferrite polymère) sont testés et leurs avantages et inconvénients développés. Des mesures de SAR permettent aussi de démontrer l’efficacité de ces méthodes sur la réduction de la puissance absorbée par les tissus. Au final, ce travail apporte une contribution à l’étude théorique et expérimentale de l’interaction entre corps humain et antenne dans le cadre des réseaux BAN appliqués à la télésurveillance de la santé
-Antennes (électronique)
-Systèmes de communication sans fil
-Électromagnétisme Effets physiologiques
-Ferrites (matériaux magnétiques)
In this age of wireless technology, Body Area networks (BAN) is revolutionising the concept of patient care and health monitoring. BAN provides people good assessment of their health status at any time, wherever they are physically. The increased interest in developing effective body (in, on & off) communication systems made phantoms which can mimic the electrical properties of an actual human body necessary. Wearable antennas which are the indispensable part of BAN got to be low pro file and above all influences that human body can make. There should also be a way to reduce the effect of antennas on human body namely specific absorption rate (SAR). In this work effort has been made to develop phantoms suitable for both On body and In body communications. The base materials which are selected for the study are of biological origin (bio ceramics and biopolymers) whose behaviour is closer to that of human tissues. As these phantoms are biocompatible they are essentially non toxic where the conventionally available phantoms are toxic in nature. Different kinds of low profile conformal wearable antennas working at 2.4GHz ISM band were developed and studied in the BAN perspective. Antennas suffer much in terms of matching and efficiency when they are in contact or in the premises of human body. This is a major hurdle in the way to setting up a good body communication network. This work encompasses various techniques adopted to limit the body interferences to an acceptable level. The techniques adopted (Such as Backing Ground Plane, High Impedance Surface & Polymeric Ferrite Sheets) proved to be effective in reducing the sway in antenna characteristics when they are mounted on body. Specific absorption rate is also brought to acceptable levels and thus avoiding the formation of hot spots due to microwave absorption. A safer and cost effective BAN can be set up using this work which will lead to a safer, mobile and healthy future
-Body Area networks
-Electrical properties
-Specific absorption rate
-Backing Ground Plane
-High Impedance Surface
-Polymeric Ferrite Sheets
-Microwave absorption
-Wearable antennas
Source: http://www.theses.fr/2009PEST1006/document

Subjects

Informations

Published by
Reads 107
Language English
Document size 5 MB

[Robin Augustine - Thesis ] [2009]


ECOLEDOCTORALEICMS
THESE
pourobtenirlegradede
Docteurdel’UniversitéParisEst
Spécialité:ELECTRONIQUEETOPTRONIQUESYSTEMES
Présentéeetsoutenuepubliquementpar
RobinAUGUSTINE
MODELISATIONELECTROMAGNETIQUEDESTISSUSHUMAINS:
APPLICATIONAUXINTERACTIONSENTRELECORPSHUMAIN
ETLESANTENNESDANSLECONTEXTEDESRESEAUXBAN

ThèsedirigéeparJeanMarcLAHEURTE
Soutenu:le8 Juillet2009
Rapporteurs:
RaphaelGILLARDProfesseuràl'INSAdeRennes
ValérieVIGNERASProfesseuràl’ENSCPdeBordeaux
Examinateur:
JeanMarcLaheurteProfesseuràParisEstMarneLaVallée
K.T.Mathew ProfesseuràCochinUniversityofScienceandTechnology(India)
P.MohananProfesseuràCochinUniversityofScienceandTechnology(India)
HamsakuttyVettikalladiProfesseuràUniversityofCalicut(India)
1

tel-00499255, version 1 - 9 Jul 2010[Robin Augustine - Thesis ] [2009]










Electromagneticmodellingofhumantissuesanditsapplication
ontheinteractionbetweenantennaandhumanbodyintheBAN
context











2

tel-00499255, version 1 - 9 Jul 2010[Robin Augustine - Thesis ] [2009]

ACKNOWLEDGEMENT

FirstofallIamdeeplyindebtedtotheGodalmightyandmyparentswhogavemebirthand
nurturedmeallthewaylongtothepersonIamtoday.Iexpressmysincererespectandgratitude
towardsthem.IdeeplyowetoProf.Jean6MarcLaheurteandProf.K.T.Mathew,astheirresearch
student in ESYCOM, Paris Est and MTMR, CUSAT, I availed Their invaluable guidance,
continuous encouragement and ever memorable humanitarian considerations. I heart fully
acknowledge the helps and support provided by Prof. Odile Picon. Head of Laboratary
ESYCOM.,forcarryingouttheacademicandresearchworks.Alsotheinfrastructuralfacilities
arrangedfortheresearchworksareworthmentioningatthisinstance.Dr.MarjorieGrzeskowiak,
Dr. Benoit Poussot and Dr. Shermila Mostarshdi were of great assistance and their advices
proved to be very valuable for me. I am pleased to remember the friendship with M.Thierry
Alvesthroughoutmyresearchwork.Thefrequentdiscussionswehadwerefruitfulandfun.I
also use this opportunity to thank Dr. Rohith Kunnath Raj who was also my senior for his
companionship.IalsoowetoDr;StephenPortat, M.DavidDilcroix,Dr.ElodhieRichlotand
Laurent Cirio for the support they had for me. Mr. Thierry Sarrebourse and Mme. Hanae
Terchoune of France Telecom were real help for me during all of my SAR measurement
campaignsandIthankthemtoo.Dr.P.Mohanan,Professor.Dr.P.R.S.Pillai,Dr.Tesemma
Thomas, and C. K. Anandan, Reader, Dept. of Electronics, Cochin University of Science &
Technology,wereencouragingandIamindebtedtothemtoo.Theyarealsomentionedhere
withgratitude.IamgratefultoDr.JaimonYohannan,ResearchAssociate,forbeingmysenior
colleague,forhisguidance,motivation,assistanceandalotmore.IsincerelythankEGIDEEiffel
fortheirexcellencefellowshipwhichgavemefinancialfreedomandithelpedmealottofocus
onmywork.IalsothankUGC,IndiatoprovidemewithfinancialassistancewhileIwasinIndia.
IalsothankmyfriendsMr.SareeshJameskutty,Dr.VinuThomas,Dr.AnupamR.Chandran,
Mr.UllasG.K,Mr.Deepu.V.andDr.Saritha.
IamsomuchgratefultomybrotherMr.BobinsAugustineforhewasmyenergyboosterand
ismybestfriend.



RobinAugustine
3

tel-00499255, version 1 - 9 Jul 2010[Robin Augustine - Thesis ] [2009]










Dedicated to
The Almighty God,
My Teachers,
My Parents & Brother







4

tel-00499255, version 1 - 9 Jul 2010[Robin Augustine - Thesis ] [2009]



Abstract

Inthisageofwirelesstechnology,BodyAreanetworks(BAN)isrevolutionisingtheconceptofpatientcareand
healthmonitoring.BANprovidespeoplegoodassessmentoftheirhealthstatusatany time,wherevertheyare
physically. The increased interest in developing effective body (in, on & off) communication systems made
phantomswhichcanmimictheelectricalpropertiesofanactualhumanbodynecessary.Wearableantennaswhich
aretheindispensablepartofBANgottobelowprofileandaboveallinfluencesthathumanbodycanmake.
Thereshouldalsobeawaytoreducetheeffectofantennasonhumanbodynamelyspecificabsorptionrate(SAR).
In this work effort has been made to develop phantoms suitable for both On body and In body
communications. The base materials which are selected for the study are of biological origin (bio ceramics and
biopolymers)whosebehaviourisclosertothatofhumantissues.Asthesephantomsarebiocompatibletheyare
essentiallynontoxicwheretheconventionallyavailablephantomsaretoxicinnature.Differentkindsoflowprofile
conformalwearableantennasworkingat2.4GHzISMbandweredevelopedandstudiedintheBANperspective.
Antennassuffermuchintermsofmatchingandefficiencywhentheyareincontactorinthepremisesof
humanbody.Thisisamajorhurdleinthewaytosettingupagoodbodycommunicationnetwork.Thiswork
encompassesvarioustechniquesadoptedtolimitthebodyinterferencestoanacceptablelevel.Thetechniquesadopted
(SuchasBackingGroundPlane,HighImpedanceSurface&PolymericFerriteSheets)provedtobeeffectivein
reducing the sway in antenna characteristics when they are mounted on body. Specific absorption rate is also
broughttoacceptablelevelsandthusavoidingtheformationofhotspotsduetomicrowaveabsorption.Asaferand
costeffectiveBANcanbesetupusingthisworkwhichwillleadtoasafer,mobileandhealthyfuture.


5

tel-00499255, version 1 - 9 Jul 2010[Robin Augustine - Thesis ] [2009]


Contents

Chapter1.13
1.Introduction13
1.1.WirelessandMicrowaves13
1.2AntennasforMicrowaveCommunication19
1.2.1MicrostripAntennas(MSAs)20
1.2.2RectangularMicrostripAntennas(RMSAs)21
1.2.3Advantages28
1.2.4Disadvantages29
1.2.5ApplicationsofMSAs29
1.2.6 Feeding Techniques 30
1.3IndustrialScientificandMedical(ISM)Applications32
1.4WirelessBodyAreaNetworks(WBANs)33
1.4.1OffBodytoOnBodyCommunications34
1.4.2.OnBodyCommunications35
1.5.NumericalMethodsinElectromagnetics36
1.5.1MethodofMoments36
1.5.2FiniteElementMethod37
1.5.3FiniteDifferenceTimeDomainMethod38
1.5.4TransmissionLineMatrixMethod38
1.6CommercialElectromagneticSimulationTools39
6

tel-00499255, version 1 - 9 Jul 2010b
[Robin Augustine - Thesis ] [2009]

1.7MotivationandObjectiveoftheResearchWork39
1.8OrganizationoftheThesis41

REFERENCES42

Chapter2.44

LITERATUREREVIEW44
2.1.ElectromagneticCharacteristicsofHumanTissues44
2.2.PhysicalBodyPhantoms47
2.2.1.LiquidPhantoms49
2.2.2.Semisolid(Gel)orSolid(Wet)Phantoms49
2.2.3Solid(Dry)Phantoms50
2.3.ExamplesofPhysicalPhantoms50
2.4.NumericalPhantoms51
2.4.1.TheoreticalPhantoms51
2.4.2.VoxelPhantoms51
2.5.UseofBiomaterialsfortheDevelopmentofReliableHumanSolidPhantoms52
2.5.1.Bioceramics53
2.5.1.1.Hydroxyapatite53
2.5.1.2. TricalciumPhosphate(βTCP)54
2.5.1.3.BiphasicBioceramics55
2.5.2.Biopolymers55
2.6.WearableAntennas55

REFERENCES58

Chapter364
7

tel-00499255, version 1 - 9 Jul 2010[Robin Augustine - Thesis ] [2009]


EXPERIMENTALSETUPSANDMETHODOLOGIES64
3.1Perturbationmethods64
3.1.1.CavityPerturbationtechnique64
3.1.1.a.Dielectricparameters66
3.1.1.b.Magneticparameters68
3.1.2.Coaxialtransmissionlineresonator70
3.2.HP8510CVectorNetworkAnalyzer73
3.3.Anechoicchamber74
3.4.Automatedturntableassemblyforfarfieldmeasurements75
3.5.Experimentalsetup75
3.5.1.Measurementprocedure77
3.5.2.Sparameters,ResonantfrequencyandBandwidth77
3.6.Gain78
3.7.Polarizationpattern79
3.8.ImpedanceandVSWR79
3.9.Radiationpattern80
3.10.Efficiencymeasurementtechniques81
3.10.1.RadiationEfficiency81
3.10.1.1.Wheelercapmethod81
3.10.1.2.ReverberationChamber83
3.11.XrayDifractometry(XRD)84
3.12.FourrierTransformInfraredSpectroscopy(FTIR)85
8

tel-00499255, version 1 - 9 Jul 2010[Robin Augustine - Thesis ] [2009]

3.13.1.Specificabsorptionrate(SAR)86
3.13.1.1.Generalrequirements87
3.13.1.2Phantomspecifications(shellandliquid)88
3.13.1.2.1.PhantomshapeandSize88
3.13.1.2.2.PhantomShell88
3.13.1.2.3.LiquidMaterialProperties89
3.13.1.2.3.a.LiquidRecipe90
3.13.1.3.SpecificationsoftheSARmeasurementequipment90
3.13.1.3.1.Robotspecifications90
3.13.1.3.1.a.AUTholderspecifications91

REFERENCES92
Chapter495

MODELLING OF PHYSICAL MICROWAVE PHANTOMS AND DEVELOPMENT OF SHIELDING
MATERIALSFORONBODYCOMMUNICATIONS95
4.1.DevelopmentofBioceramicandBiopolymerBasedphantoms96
4.1.1.HydroxyApatite96
4.1.2Chitosan101
4.1.3.HydroxyapatiteChitosanComposite106
4.1.4.BetaTricalciumPhosphateBioceramics114
4.1.5.BiphasicChitosan–GlycineMaxCompositeBioceramics121
9

tel-00499255, version 1 - 9 Jul 2010[Robin Augustine - Thesis ] [2009]

4.1.6.MarantaArundinacea(Arrowroot)128
4.1.6.a.Permittivity129
4.1.6.b.Lossfactor129
4.1.6.c.MicrowaveAbsorption130
4.1.6.d.Otherproperties131
4.2.PolyanilineBasedMaterialsforEfficientEMIShielding132
4.2.1.ReflectionCoefficient135
4.2.2.TransmissionCoefficient137
4.2.3.ShieldingEfficiency138
4.2.4.SkinDepth 141
4.3.Conclusions142
4.4.AdvantagesofBioPhantoms142
4.5.Shortcoming143
REFERENCES144

Chapter5149
THEBODYINFLUENCEANDAWAYOUTINTHEPERSPECTIVEOF
BANAPPLICATIONS149
5.1.WearableAntennas149
5.1.1.DesignOfLowProfileBANAntennas150
5.1.1.1. IntegratedInvertedFAntenna(IIFA)150
5.1.1.2. PlanarInvertedFAntenna(PIFA)152
5.1.1.3. CoplanarWirePatchAntenna(CWPA)153
5.1.2. BANAntennaefficiency155
5.1.3. BodyInfluenceandAntennaPerformances156
10

tel-00499255, version 1 - 9 Jul 2010