158 Pages
English

Neutrino oscillation physics at neutrino factories and beta beams [Elektronische Ressource] / Mark Benjamin Rolinec

Gain access to the library to view online
Learn more

Description

Neutrino Oscillation PhysicsatNeutrino Factories and Beta BeamsMark Benjamin RolinecDissertationJune 2007Technische Universitat Munchen¨ ¨Physik-DepartmentInstitut fur Theoretische Physik T30d¨Univ.-Prof. Dr. Manfred LindnerNeutrino Oscillation PhysicsatNeutrino Factories and Beta BeamsDipl.-Phys. Univ. Mark Benjamin RolinecVollst¨andiger Abdruckdervon der Fakulta¨t fu¨rPhysikder TechnischenUniversita¨t Mu¨nchenzur Erlangung des akademischen Grades einesDoktors der Naturwissenschaften (Dr. rer. nat.)genehmigten Dissertation.Vorsitzender: Univ.-Prof. Dr. Lothar OberauerPru¨fer der Dissertation: 1. Univ.-Prof. Dr. Manfred Lindner2. Univ.-Prof. Dr. Andrzej J. BurasDieDissertationwurdeam13. Juni2007beiderTechnischenUniversita¨tMu¨ncheneingereichtund durch die Fakultat fur Physik am 23. Juli 2007 angenommen.¨ ¨Wenn wir jetzt Schinken ha¨tten, k¨onnten wir Ru¨hrei mitSchinken machen, wenn wir Eier hatten.¨Kathrin PassigSie befinden sich hierIContents1 Introduction 12 The Standard Model 53 Neutrino Masses and Mixing 93.1 Neutrino Mass Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.2 Neutrino Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.3 See-Saw Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.4 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Neutrino Oscillations 214.1 Two Flavor Oscillations . . . . . . .

Subjects

Informations

Published by
Published 01 January 2007
Reads 19
Language English
Document size 1 MB

Neutrino Oscillation Physics
at
Neutrino Factories and Beta Beams
Mark Benjamin Rolinec
Dissertation
June 2007Technische Universitat Munchen¨ ¨
Physik-Department
Institut fur Theoretische Physik T30d¨
Univ.-Prof. Dr. Manfred Lindner
Neutrino Oscillation Physics
at
Neutrino Factories and Beta Beams
Dipl.-Phys. Univ. Mark Benjamin Rolinec
Vollst¨andiger Abdruckdervon der Fakult¨at fu¨rPhysikder TechnischenUniversit¨at Mu¨nchen
zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.
Vorsitzender: Univ.-Prof. Dr. Lothar Oberauer
Pru¨fer der Dissertation: 1. Univ.-Prof. Dr. Manfred Lindner
2. Univ.-Prof. Dr. Andrzej J. Buras
DieDissertationwurdeam13. Juni2007beiderTechnischenUniversit¨atMu¨ncheneingereicht
und durch die Fakultat fur Physik am 23. Juli 2007 angenommen.¨ ¨Wenn wir jetzt Schinken ha¨tten, k¨onnten wir Ru¨hrei mit
Schinken machen, wenn wir Eier hatten.¨
Kathrin Passig
Sie befinden sich hierI
Contents
1 Introduction 1
2 The Standard Model 5
3 Neutrino Masses and Mixing 9
3.1 Neutrino Mass Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Neutrino Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 See-Saw Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Neutrino Oscillations 21
4.1 Two Flavor Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Matter Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Three Flavor Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Phenomenology of P and P . . . . . . . . . . . . . . . . . . . . . . . . . . . 31eμ ee
5 Neutrino Data 37
5.1 Number of Flavors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Absolute Mass Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Oscillation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6 Long Baseline Experiment Scenarios 49
6.1 Conventional Beam Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Superbeams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Reactor Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 Electron Capture Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.5 Beta Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.6 Neutrino Factories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7 Beta Beam Performance 63
7.1 Beta Beam Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Beta Beam Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3 Neutrino and Anti-Neutrino Runtime Fraction . . . . . . . . . . . . . . . . . . 81
7.4 Addition of T2K Disappearance Data . . . . . . . . . . . . . . . . . . . . . . . . 82
7.5 γ-Scaling of the Isotope Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.6 Performance of the β-Beam Reference Scenarios . . . . . . . . . . . . . . . . . . 86II CONTENTS
8 Neutrino Factory Performance 89
8.1 Neutrino Factory Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2 Neutrino Factory Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.3 Neutrino and Anti-Neutrino Runtime Fraction . . . . . . . . . . . . . . . . . . 100
8.4 Matter Density Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.5 Inclusion of Different Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.6 Performance of the Neutrino Factory Reference Scenarios . . . . . . . . . . . . . 108
9 The Global Picture 113
9.1 The Road Map of Neutrino Oscillation Experiments . . . . . . . . . . . . . . . 113
9.2 Promising Future Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
10 Summary and Conclusions 121
A The General Long Baseline Experiment Simulator 125
B Performance Indicators 127
Acknowledgments 129
Bibliography 132III
List of Figures
3.1 Diagramaticillustrationofthegenerationofm throughtheSee-Sawmechanism. 14L
3.2 Mass spectrumof the three neutrinomasseigenstates ν ,ν , andν fornormal1 2 3
and inverted hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 The diagram of the simplest process leading to neutrino-less double beta decay. 17
3.4 The diagram, leading to an effective Majorana mass in case of a black box
process for neutrino-less double beta decay. . . . . . . . . . . . . . . . . . . . . 18
3.5 The effective neutrino mass parameterhm i relevant for neutrino-less doubleee
beta decay as a function of the lightest neutrino mass. . . . . . . . . . . . . . . 19
3.6 The tree level and one-loop level Feynman diagrams for the decay of heavy
right-handed neutrinos N into the Higgs doublet and the lepton doublet, rel-i
evant for Leptogenesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Neutrino oscillation probability in the two-flavor scenario as a function of the
baseline and the neutrino energy. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 The Feynman diagrams for coherent forward scattering of neutrinos in matter . 23
4.3 The Neutrino mixing angle in matter for neutrinos involving the Mikheyev-
Smirnov-Wolfensteinresonanceandforanti-neutrinosasafunctionofthemat-
′ter potential parameter A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Theeffective energyeigenvaluesinmatterandthemasseigenstate composition
′of the flavor eigenstate|ν i as functions of the matter potential parameter A.. 29α
5.1 Possible neutrinomass spectra with a fourthsterile neutrinoandan additional
2mass-squared difference Δm . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
LSND
6.1 Schematic illustration of neutrino source, oscillation channels, and detection
principles at conventional beam experiments and at Superbeam experiments. . 51
6.2 Schematic illustration of neutrino source, oscillation channels, and detection
principles at a neutrino reactor experiment. . . . . . . . . . . . . . . . . . . . . 53
6.3 Schematic illustration of neutrino source, oscillation channels, and detection
principles at a β-Beam experiment. . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4 The energy spectrum of the neutrino flux at a β-Beam experiment. . . . . . . . 57
6.5 Schematic illustration of neutrino source, oscillation channels, and detection
principles at a Neutrino Factory experiment. . . . . . . . . . . . . . . . . . . . 59
6.6 The energy spectrum of the neutrino flux at a Neutrino Factory experiment. . . 60
27.1 Thesensitivitylimittosin 2θ ataβ-Beam(WC)asafunctionofthebaseline13
L at fixed γ =150 and γ =350. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69IV LIST OF FIGURES
27.2 The sensitivity limit to sin 2θ at a β-Beam (TASD) as a function of the13
baseline L at fixed γ =500 and γ =1000. . . . . . . . . . . . . . . . . . . . . . 70
27.3 The sensitivity limit to sin 2θ at a β-Beam (WC) as a function of γ at the13
fixed baselines L=130 km and L=730 km. . . . . . . . . . . . . . . . . . . . 71
27.4 The sensitivity limit to sin 2θ at a β-Beam (TASD) as a function of γ at the13
fixed baselines L=730 km and L=1500 km. . . . . . . . . . . . . . . . . . . . 73
7.5 The sensitivity to maximal CP violation at a β-Beam as a function of the
baseline L at fixed a γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.6 The sensitivity to maximal CP violation at a β-Beam as a function of γ at a
fixed baseline L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.7 The sensitivity to mass hierarchy at a β-Beam as a function of the baseline L
at fixed γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.8 The sensitivity to mass hierarchy at a β-Beam as a function of γ at a fixed
baseline L.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
18 67.9 The impact of the ratio of neutrino ( Ne stored) and anti-neutrino ( He
2stored) runtimeat aβ-Beam onthe sensitivitylimit tosin 2θ , thesensitivity13
to maximal CP violation, and sensitivity to the mass hierarchy. . . . . . . . . . 81
7.10 The impact of the addition of T2K disappearance data to the β-Beam data on
2thesin 2θ discoveryreach,thesensitivitytoanyCPviolation, andsensitivity13
to the mass hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.11 The impact of the γ-scaling of the number of isotope decays per year at a β-
2Beam on the sin 2θ discovery reach, the sensitivity to any CP violation, and13
sensitivity to the mass hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.12 The comparison of the performance of all β-Beam reference scenarios for the
2performance indicators sin 2θ discovery reach, sensitivity to any CP viola-13
tion, and sensitivity to the mass hierarchy. . . . . . . . . . . . . . . . . . . . . . 87
28.1 The sensitivity limit to sin 2θ at a Neutrino Factory as a function of the13
baseline L for a fixed parent muon energy of E =25 GeV and E =50 GeV. . 95μ μ
28.2 The sensitivity limit to sin 2θ at a Neutrino Factory as a function of the13
parent muon energy for a fixed baseline of L = 4000 km and L = 7500 km. . 96
8.3 The sensitivity to maximal CP violation at a Neutrino Factory as a function of
thebaselineLforafixedparentmuonenergiesofE =25GeVandE =50GeV. 97μ μ
8.4 The sensitivity to mass hierarchy at a Neutrino Factory as a function of the
baseline L for a fixed parent muon energies of E =25 GeV and E =50 GeV. 98μ μ
8.5 The impact of the ratio of neutrino and anti-neutrino runtime at a Neutrino
2Factory on the sensitivity limit to sin 2θ , the sensitivity to maximal CP13
violation, and sensitivity to the mass hierarchy. . . . . . . . . . . . . . . . . . . 101
8.6 The impact of the matter density uncertainty at a Neutrino Factory on the
2sin 2θ discoveryreach, the sensitivity to any CPviolation, and sensitivity to13
the mass hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.7 The sensitivity gap coverage for a combination of golden and silver channel as
a function of the silver channel detector . . . . . . . . . . . . . . . . . . . . . . 105
8.8 TheimpactoftheupperplatinumCIDthresholdtotheCPviolationsensitivity
2for small, intermediate, and large sin 2θ . . . . . . . . . . . . . . . . . . . . . 10613