61 Pages
English

On a problem of Erdös in combinatorial geometry [Elektronische Ressource] / Tobias Gerken

Gain access to the library to view online
Learn more

Informations

Published by
Published 01 January 2006
Reads 25
Language English
Document size 1 MB

Dr
Ric
d
Prag
genehmigten
at

T
er
V
J
he
h
UnivProf
in
hen
u
hnisc
trum

die
erzita
f
hec
andiger
h

der
n
akult
V
F
J
ur
tereb
r
der
binatorial
Dr
d
ec
ersit

ersit
M
Mathematik
d
en
v
at
s
ollst

a
P
Ab
New
Dissertation
k
c
at
er
v
at
unc
Dissertation
c
orsitzender
os
Dr
akult
ersit
Mathematik
h
f
ert
Com
ufer
Mathematik
Dissertation
Zen
UnivProf
T
P
Geometry
Gritzmann
hnisc
T
hnisc
Ji
n
r
F

h

ec
am
M
Problem
druc
ork
M
i
unc
Karlo
hen
a
zur
e
Erlangung
c
des
b
eingereic
am
ademisc
anos
hen
ac
M
Ph
eines
Y
Doktors
wurde
at
y
Naturwissensc
Die
haften
hriftlic
r
Beurteilung
r
angenommen
T
he
On
of
Erd
der
der
Univ
hen
Pr
atou
sek
Univ
T
Univ
ersit
USA
Univ
tu
unc
Prof

hien
Prof

eter

urgen
der
Grades
ak
at
hen
ec
ur
on
Gerk
obias
hen
Univwn
the
set
e
ex
and
ot
wn
e
p
v
lso
a
sense
c
con

o
p
onvex
oin
question
pr
w
the
the
v
n
empt
os
is
hexagon
sets
binatorial
n
e
and
try
n
tly
hexagon
e
et
f

the
er
in
n
n
e
sition
ertex
or
con
lane
ertex
a
that
gon

tains
that
con
n
The
v
in
replaced
there
op
con
longtanding
ertex
whether
of
geome
osition
v
o
o
p
suien
general
kno
v
large
is
this
ev
o
p
as
hexagon
p
W
e
answ
ts
v
emptyexagon
in
general
amativ
solv
W
o
o
y
o
in
ery
p
the
p
tains
hole
v
con
set
f
six
con
oblem
ex
i
a
i
con
conjecture
an
b
y
form
v
a
hexagon
en
result
ask
sharp
ex
s
com
that
without
exist
an
e
y
o
w
v
i
d
a
In
thesis
e
roblem
pr
tains
o
ts
v
gon
gon
the
d
set
n
in
con
its
a
in
e
terior
in
Suc
n
h
ex
a
It
conuration
kno
is
ts
called
ery
ex
of
empty
oin
c
i
ev
Abstract
Erd
ed
in

po
con
an
po
an
that
the
tain
set
yc
that
set
fac
be

an
is
it
tain
mpt
tain
ex
that
con
that
set
sho
the
the
from
ts
ery
oblem
Cases

of

Com

In

t
f

oundations

Chapter

Geometry

List
Individual
S
Discussion
duction

M




v

from

i

binatorial


Cases


y

Problem

tro

tatemen
erview
of
the
and
o


ain
Elemen
Chapter


F
Cases
Related

ten
Abstract
Figures

Result
tary
W

ork
Cases




Bibliograph

kno

wledgemen

ts
Cases


Chapter
and


Pro

of

of
Cases
Theorem


Cases

Cases
Con
ts











iii
The
The
The
The
and
The
and
The
Pro
Ov
Ac


j

Case

Com

with
Case
Case

Case



Case
cases

Case
for



with


with


T
with
the

with





Observ
Case





Cases
Deition








Case
j
Cases

with

Notation



Case



Basic



Cases
Case


Notation



binatorial


t
Figures




Case





Notation

the


ation
QR



T


Sector



x

T




Degenerate
T

with




Cases








Example


for

with



Example

Klein




of


Sub




Cases
with






Case



t

Observ




Cases

Case
Case

Observ




with
Case





v






The

The

The

The

The


The

The

The

The

The

The

The

The

The

The

ation



ation


The

PQ
The

WX
XY
The




and






and

Listoin



that
Case
t


Case
with


on


with
e



f
o
Case
with


n
Example
n
v

ex
Rule


Deition




Rule




R

A
Application



o

f



n
v

con
a

hexagon

n
d
y
no
ull







R



hexagon
Rule
Case


OF
p







a

con
Pro
no
with
m



o
f



of




ex
FIGURES

Rules
Rule




A

R

R



Example

of

set
t

Case
t

i

ts

con
with
v

h

empt



vi
LIST
a


with

po
the
and
ex

ts
no
con
eigh
has
The
tains

The
The
The
The