Read anywhere, anytime
Capozzi, Francesco, Piro, Giuseppe, Grieco,, Boggia, Gennaro, Camarda,, Camarda, Pietro - biomed
Description
Subjects
Informations
Published by | biomed |
Published | 01 January 2012 |
Reads | 23 |
Language | English |
Document size | 1 MB |
Exrait
Capozzi
etal.EURASIPJournalonWirelessCommunicationsandNetworking
2012,
2012
:328
http://jwcn.eurasipjournals.com/content/2012/1/328
RESEARCH
OpenAccess
OnaccuratesimulationsofLTEfemtocells
usinganopensourcesimulator
FrancescoCapozzi
1*
,GiuseppePiro
2
,LuigiAGrieco
2
,GennaroBoggia
2
andPietroCamarda
2
Abstract
Long-termevolution(LTE)femtocellsrepresentaverypromisinganswertotheevergrowingbandwidthdemandof
mobileapplications.Theycanbeeasilydeployedwithoutrequiringacentralizedplanning,toprovidehighdatarate
connectivitywithalimitedcoverage.Inthisway,theoverallcapacityofthecellularnetworkcanbegreatlyimproved.
Atthesametime,theuncoordinatedsetupoffemtocellsposesnewissuesthatrequireadeepandthoroughanalysis
beforespreadingthistechnologyworldwide.Unfortunately,tothebestofourknowledge,noaccuratesimulation
toolsarefreelyavailableforenablingthiskindofinvestigation.Thus,wepresentinthisstudyasimulationtoolforLTE
femtocells,implementedasamoduleoftheemergingopensourceLTE-simframework.Itencompasses
heterogeneousscenarioswithbothmacroandfemtocells,spectrumallocationtechniques,usermobility,femtocell
accesspolicies,andseveralotherfeaturesrelatedtothispromisingtechnology.Afterreviewingthestatusofthearton
LTEfemtocells,wedetailthedescriptionofthemodulethatweproposewithamajoremphasisonthenewlydevised
lossmodelsforindoorscenarios,thenewnetworktopologyobjects,andthemostsignificantenhancementstothe
simulatorprotocolstack.Furthermore,toprovideaclearunderstandingofthepracticalutilityofthisnewsimulator,
weinvestigatetwoindoorandurbanscenarios.Ascalabilitytestisalsopresentedtodemonstratetheefficiencyofthe
proposedtoolintermsofprocessingrequirements.Allpresentedresultssuggestthatthisnewmodulecanbevery
interestingfortheresearchcommunity,duetoitsgreatflexibilityandlimitedcomputationalcost.
Keywords:
Femtocells,3GPP,LTE,E-UTRA,Networksimulator,Performanceevaluation
1Introduction
theyensurethemaximumachievablephysicalrate.On
Thecapillarydiffusionofsmartphonesandtabletsandtheotherside,theamountofspectrumexpectedtobe
theintegrationofconnectivitycapabilitiesincommonlifelicensedduringnextyearsislessthanwhatrequestedby
objects(suchasTVs,domesticappliances,andvehicles)mobileoperators[4].Accordingtothisvision,thedeploy-
aregeneratingaveryfastgrowthofbandwidthdemandmentofsmallcellswithinthetypicalstructureofcellular
formobileapplications[1].Despiteemergingbroadbandnetworks,representsthesmartestsolutionforboosting
technologies(e.g.,WiMAX[2]andLTE[3])areabletoservicesinthesesystems[5].
enhancetheperformanceofcurrentlyused3Gsystems,Followingthisdirection,the3GPPhasintroduced,
theymightnotbeabletosustaintheexpectedraiseofthewithinthelong-termevolution-advanced(LTE-A)specifi-
trafficvolume.cations,thepossibilitytodeployaheterogeneousnetwork
Asaconsequence,notableimprovementsinbothcapac-(HetNet)composedbymacroandsmall-range(i.e.,micro,
ityandcoverageofmobilecommunicationsystemsarepico,andfemto)cells[6].Microandpicocellscouldbe
required,buttheycannotbefulfilledbyonlyenhancingexploitedforenhancingcoverageandcapacityinsome
the(PHY)layerand/orincreasingtheavailablespectrum.regionsinsidethemacrocell.Whereas,femtocellshave
Fromoneside,infact,latestinnovativePHYtechniquesbeendevisedforofferingbroadbandservicesinindoor
workveryclosetotheShannonlimit;inthismanner,(i.e.,homeandoffices)andoutdoorscenarioswithavery
limitedgeographicalcoverage.Amongthiskindofcells,
*Correspondence:francesco.capozzi@itia.cnr.it
theroleoffemtocellsbecomefundamental,becauseitis
1ITIA-CNR,v.PLembo,38F-70124,Bari,Italy
Fulllistofauthorinformationisavailableattheendofthearticle
©2012Capozzietal.;licenseeSpringer.ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommons
AttributionLicense(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,andreproduction
inanymedium,providedtheoriginalworkisproperlycited.
Capozzi
etal.EURASIPJournalonWirelessCommunicationsandNetworking
2012,
2012
:328
http://jwcn.eurasipjournals.com/content/2012/1/328
expectedthatinupcomingyearsthemostpartofvoice
callsanddatasessionswilltakeplaceinhomeorbusiness
environments[7].
Afemtocellcanbeeasilysetupwithoutanycentral-
izedcoordination,butsimplyenablingalow-powerand
small-rangeradiobasestation,whichisreferredtoas
homeevolvedNodeB(HeNB).Suchadevicehasplug-
and-playcapabilities,isconnectedtothecorenetwork
throughaDSLline,andoperatesinthespectrumlicensed
forcellularsystems[8].Theuncoordinatednatureof
femtocelldeploymentposesnovelandinterestingchal-
lengesonradioresourcemanagement(RRM).Infact,
classicalapproachesalreadyadoptedin3Gsystemsto
facefrequencyplanning,interferencecoordination,radio
resourcescheduling,andaccesspoliciescouldbenot
usefulanymoreinHetNetscenarios.
Startingfromthispremise,itisevidentthatthedevelop-
mentofnovelnetworkarchitecturesandtheoptimization
ofnextgenerationcellularsystemsbasedonfemtocells
aretopicsworthofinvestigationforbothindustryand
academiccommunities.
Inthisperspective,theavailabilityofaccuratesimu-
lationframeworksappearsoffundamentalimportance.
Severalopen-sourceandcommercialtoolsaretodayavail-
ableforsimulatingsomepartsoftheLTEsystem[9-14],
butnoneofthemprovidesmediaaccesscontrol(MAC)
andPHYmodelsforfemtocellarchitectures,handover
strategiesproperlyconceivedforHetNet,andspecific
propagationlossmodelsforindoorenvironments.Asys-
temlevelsimulatorforLTEfemtocellshasbeenproposed
in[15].However,itscodeisnotyetavailableand,forthis
reason,itcannotadequatelyservetheresearchcommu-
nity.Atthepresent,tothebestofourknowledge,the
onlyvaluabletoolistheonedevelopedforthenetwork
simulator3(NS-3)withintheLENAproject[16].Unfor-
tunately,despiteitprovidesstandardcompliantdefinition
oftheLTEnetworkarchitectureaswellasseveralprop-
agationlossmodelsforindoorscenarios,atthecurrent
statusitcannotbesufficientinhelpingresearchersdur-
ingthestudyoffemtocellrelatedissues.Infact,itdoes
notimplementanyhandoverstrategiesforHetNet,itdoes
notallowtheapplicationofdifferentaccesspoliciesto
theHeNB,itoffersonlyaweaksupportforthequal-
ityofservice(QoS)management[17](e.g.,onlysimple
schedulingstrategies,suchasMaximumThroughputand
ProportionalFair,havebeendevelopedattheMAClayer).
Inaddition,thesetupofarealisticsimulationscenariois
difficulttoaccomplish,especiallyforanon-expertNS-3
.ersuTobridgethisgap,thepresentstudyproposesamodule
thatextendsthefunctionsoftheemergingopensource
LTE-simframework[18],thusallowingalsothesimu-
lationofscenarioswithLTEfemtocells
a
.Itprovidesa
widerangeoffeaturesandhighscalability.Itencompasses
Page2of13
scenarioswithbothmacroandfemtocells,inmulti-cell
andmulti-userenvironments,andimplementsacomplete
LTEprotocolstackalongwithadvancedRRMtechniques,
suchasfrequencyreuseschemes,packetscheduling,and
QoSmanagement.Usermobilityisalsoconsideredand
severalconfigurationsofmobilitypatternsandhandover
mechanismsareconsidered.
Webelievethatthedevelopedtoolrepresentsagood
andusefulresearchtoolfortacklingseveralopenissues
suchas:(i)thedeploymentofheterogeneousLTEnet-
workscomposedbymacroandfemtocells;(ii)thedesign
ofsophisticatedtechniquesforbothradioresourceand
interferencemanagement;(iii)theimplementationof
novelcognitive-basedand/orself-organizedalgorithms,
protocols,andproceduresforthesetupofnextgeneration
broadbandnetworks,andsoon.
Inordertoshedsomelightonthepracticalutilityof
theproposedtool,inthisarticlewereportsomeexamples
aboutitsapplication.Inparticular,somereferenceindoor
andurbanscenariosareevaluated.Itisworthtonote
thatsuchananalysisisonlyintendedtodemonstratethe
generalagreementbetweenwhatisexpectedfromathe-
oreticalpointofviewandtheoutcomesofthesimulation
modulewepropose.
Furthermore,ascalabilityanalysistomeasurethecom-
putationalrequirementsofthedevelopedtool(i.e.,simu-
lationtimeandmemoryusage)hasbeenalsoprovided.
Therestofthearticleisorganizedasfollows:Section2
describesLTEfemtocells,highlightingprosandcons
relatedtothedevelopmentofthisnewtechnologyand
themostimportantopenissuesthatjustifytheneedofa
simulationframework.InSection3,thedevelopedmod-
uleisdescribed,withparticularemphasisonthenewly
implementedpropagationlossmodelsforindoorscenar-
ios,theintroductionofnewnetworktopologyobjects,
andtheenhancementsofsomemodulesoftheLTE-sim
framework.Section4providessomereferenceresultson
significantscenariosinordertoprovideaclearassessment
ofthepracticalutilityofthesimulatorandtodemon-
strateitsscalability.Finally,Section5drawsconclusions
andforecastsfutureworks.
2LTEfemtocells
TheLTEsystemismainlycomposedbytwoparts:theair
interface,i.e.,theevolved-universalterrestrialradioaccess
network(E-UTRAN),andthepacketswitchedcorenet-
work,knownasEvolvedPacketCore.Fromthenetwork
side,theevolvedNodeB(eNB)istheonlynodeofthe
E-UTRANanditisinchargeofprovidingnetworkcon-
nectivitythroughtheairinterfacetoalluserequipments
(UEs)inthecell,accordingtotheclassiccellularnetwork
paradigm.
Atthephysicallayer,theradiointerfacesupportsboth
frequencyandtimedivisionsduplexing.Channelaccess,
Capozzi
etal.EURASIPJournalonWirelessCommunicationsandNetworking
2012,
2012
:328
http://jwcn.eurasipjournals.com/content/2012/1/328
instead,isbasedonorthogonalfrequencydivisionmul-
tipleaccess(OFDMA),whichprovideshighflexibilityin
termsofschedulingandinterferencemanagement[3].
Accordingto[19],radioresourcesareallocatedina
time/frequencydomain.Inthetimedomain,theyare
distributedeverytransmissiontimeinterval(TTI),each
onelasting1ms.Furthermore,eachTTIiscomposedby
twotimeslotsof0.5ms,correspondingtosevenOFDM
symbolsinthedefaultconfigurationwithshortcyclic
prefix;10consecutiveTTIsformtheLTEFramelasting
10ms.Inthefrequencydomain,instead,thewholeband-
widthisdividedinto180kHzsub-channels,correspond-
ingto12consecutiveandequallyspacedsub-carriers.A
time/frequencyradioresource,spanningoveronetime
slotlasting0.5msinthetimedomainandoveronesub-
channelinthefrequencydomain,iscalledresourceblock
(RB)andcorrespondstothesmallestradioresourcethat
canbeassignedtoanUEfordatatransmission.Notethat,
duetothefixedsub-channelsize,thenumberofsub-
channelsvariesaccordinglytodifferentsystembandwidth
configurations(e.g.,25and50RBsforsystembandwidths
of5and10MHz,respectively).
In[20],the3GPPintroducedanewlow-powerand
small-rangeradiobasedstation,i.e.,theHeNB,forpro-
vidingbroadbandservicesinindoorandoutdoorenviron-
ments.Suchadeviceisconnectedtotheoperatornetwork
throughaDSLlineavailableatconsumers’housesor
offices,likeacommonWi-Fiaccesspoint.Thevery
limitedgeographicalareaitcoversiscalled
femtocell
(Figure1).
Severalbenefitsareexpectedfromfemtocelldeploy-
ment.Firstofall,networkcapacitycanbeincreased.
Accordingto[5],OFDMA-basedtechnologies,suchas
LTE,workveryclosetotheShannonLimit,andtheonly
waytosurelyincreasethecapacityofasinglewireless
linkistoputthetransmitterandthereceivercloserto
eachother,asintherationaleofLTEfemtocells.Inthis
macro cellfemtocell
E-UTRAN interfacecorenetworkE-UTRAN interface
mobile
operator’s
CPEEUBeNUEIP backhualHeNB
LSDFigure1
Networkarchitecturemacroandfemtocells.
Page3of13
way,itisalsopossibletosignificantlyoffloadthemacro-
cellduetotherelevantquotaoftrafficthatfemtocellsare
expectedtoserve.Inaddition,fromaneconomicalpoint
ofview,sinceanoperatorcanaccuratelyidentifythetraffic
generated/receivedineachfemtocell,itcanofferperson-
alizedfeesanddiscountsthatcanbeveryattractivefor
consumers.
2.1Openissues
Aforementionedbenefitscomeatthecostofincreased
complexityinspectrummanagement.Beingunfeasiblea
centralizedfrequencyplanning,infact,theinterference
managementbecomesoneofthemainissuesandnew
solutionsmustbefoundtothisregard.
Thereareseveralinterestingproblemsthatcouldarise
withawidedeploymentofLTEfemtocells,whichhave
tobecarefullyaccountedforinordertoexploitallthe
potentialofthisnewpromisingtechnology.
2.1.1Howtocopewithuncoordinatedfemtocell
deployment?
AnuncoordinatedsetupofHeNBs,carriedoutwithout
takingintoaccountthelocationofmacrocellsandthe
bandwidthallocationplan,bringstoanincrementofthe
interferencelevel.Intheseconditions,amobileoperator
couldnotbeabletoeasilyapplyoptimizedRRMproce-
dures.Wecanidentifytwokindsofinterferences:
co-layer
and
cross-layer
[21].TheformerisproducedbyaHeNB
onusersservedbyotherfemtocells.Thelatter,instead,
definestheinterferencebetweenfemtocellsandmacro-
cellsthatsharethesameportionofthespectrum.Inthis
context,theresearchcommunityisdeeplyinvestigating
innovativesolutionsformitigatingtheinter-cellinter-
ference,furnishingsuchcellswithself-organizationand
cognitivecapabilities[22].
Thebasicideaisthatspectrumassignmentshouldbe
performedonadistributedbasis,byallowingeachHeNB
tomeasuretheradioenvironmentandtoautonomously
identifythebestfrequencybandsthatminimizethe
impactoftheinter-cellinterference.
2.1.2Femtocellsaccesspolicies:openor/andrestricted
accessmode?
Sincefemtocellsareexpectedtobedeployedinseveral
environments(e.g.,home,business,andoutdoorscenar-
ios)bybothmobileoperatorsandconsumers,newissues
regardingthenetworkaccesspolicyhavetobeconsidered.
AtypicalHeNBdeployedbyamobileoperatorcanbe
setupforworkinginopenaccessmode(i.e.,anyconnec-
tionrequestcanbeaccepted).Inthisway,anyuser,located
initscoveragearea,cantakeadvantagefromthehigher
capacityofferedbythefemtocell.
Fromanotherside,afemtocell,installedbyaconsumer
fordomesticuses,hastooperateinrestrictedaccess
Capozzi
etal.EURASIPJournalonWirelessCommunicationsandNetworking
2012,
2012
:328
http://jwcn.eurasipjournals.com/content/2012/1/328
mode:theaccessisallowedonlytoalimitednumber
ofdevices.Inthiscase,unauthorizeduserscouldsuffer
theimpactoftheinterferencegeneratedbythis“private”
HeNB[23].
Agoodtradeoffbetweentheaforementionedapproa-
chesisrepresentedbythe“hybrid”accessmethod:the
HeNBisinchargeofguaranteeingahighperformance
connectiononlytoalimitednumberofregisteredusers.
Atthesametime,itcouldassignacertainamountofradio
resourcestootherusers,offeringthemaminimumservice
level[24].Apracticalexampleofthispolicyistheworld
widespreadFONmodel,whichhasbeenfirstlyconceived
fortheWiFitechnology[25].
2.1.3Radioresourcemanagement
Differentlyfrom3Gnetworks,LTEsystemsarebasedon
aflattenedarchitecture,withthemainconsequencethat
alltheRRMprocedureshavetobehandledbytheeNB.
Thisaspectbecomesverycriticalforfemtocellsduetothe
limitedcomputationalcapabilitiesofHeNBs:forinstance,
therearenoguaranteesthatsophisticatedscheduling
strategies,suchasthoseproposedin[26-28],couldbe
straightlyadoptedinLTEfemtocells.Asaconsequence,
theresearchoflightweightRRMtechniquesremainsfully
opentonovelapproachesandmethodologies.
2.1.4Howtohandleusermobility?
Anothertypicalproblemoffemtocelldeploymentis
strictlyconnectedtousermobility:increasingthenum-
berofcellswithinthesamearealeadstomoreandmore
handoveroperations.Thisaspectcanbecomeverycrit-
icalbecause,despitebasestationsareconnectedamong
themusingadedicatedprotocolsuite(i.e.,throughthe
X2interface),LTEalwaysrequireshardhandover,which
is,ingeneral,aresource-demandingprocedure.Alsoin
thiscase,theresearchofnovelprocedurestocounteract
theimpactofhandoverswouldbehighlybeneficialforthe
deploymentofLTEfemtocells[29].Withinthiscontext,
somestudyhasbeencarriedout(see,forinstance,[30]),
butwithoutanyexplicitreferencetofemtocells.
2.1.5Lackingofamodelingframework
Alltheaforementionedopenissuesareconnectedtothe
lackofanunifiedmodelingapproachtoLTEfemtocells.
Mainlyduetotheabsenceoffinalspecificationdocuments
from3GPP,thismeansthatacommonprocedureand
consequentlyacommonmodelingframeworktoletthe
researchersproperlycomparetheirresultsaremissing.
Therefore,weclaimthataflexiblesimulationplatform
willsupportwellalltheactivitiesofresearchers,indus-
tries,andstandardizationbodiesthatintendtodesign
newnetworkarchitecture,protocols,andalgorithmsfor
nextgenerationbroadbandsystems.
Page4of13
3Theproposedmodule
Themoduleweproposehasbeenimplementedwithinthe
emergingopensourceframeworkLTE-sim[18].Inwhat
follows,wewillbrieflysummarizeLTE-simkeyaspects
andwewilldescribethedetailsofthenewlydeveloped
features.
3.1BasicbackgroundandrequiredupgradesonLTE-sim
LTE-simisanevent-drivensimulatorwritteninC++using
thewell-knownobject-orientedparadigm.Itencompasses
severalaspectsofLTEnetworks,includingthemodelsof
boththeE-UTRANandtheevolvedpacketsystem,down-
linkanduplinktransmissions,singleandmulti-cellenvi-
ronments,QoSmanagement,multiusersenvironment,
usermobility,handoverprocedures,andfrequencyreuse
techniques.Furthermore,theentireLTEprotocolstack
isframedfromtheapplicationtothePHYlayer,includ-
ingradioresourcecontrol(RRC),radiolinkcontrol,and
MACentities.Thisisdoneforthethreekindsofnet-
worknodes,thatis,UE,eNB,andMobilityManagement
Entity/Gateway.Inaddition,thesoftwaresupportsalso
well-knownschedulingstrategies(suchasProportional
Fair,ModifiedLargestWeightedDelayFirst,andExpo-
nentialProportionalFair,LogandExprules),Adaptive
modulationandcodingschemescheme,channelqual-
ityindicator(CQI)feedback,andseveralotheraspects
relatedtotheLTEtechnology.
ThehighflexibilityandmodularityofLTE-simallowed
ustodeviseacompletesystemforsimulatingLTEfemto-
cells,builtontopofexistingfeaturessuchasapplication
objects,tracing,interactionamongmacrocells,interfer-
encecomputation,mobility,handoverprocedures,and
oos.nThenewmodulerequiredtheupgradeandtheaddition
ofclassesandfunctionssuchas:(i)theHeNBnetwork
device;(ii)novelRRCandMACentities;(iii)dedicated
networktopologyelements(e.g.,femtocell,buildings,and
streets);and(iv)newchannelmodels.
InlinewithLTE-simdesigncriteria,theproposed
extensionhasbeenfreelyreleasedundertheGPLv3
license[31].Infact,webelievethattheopennatureofthis
softwarewouldfacilitatethecross-validationandtheinte-
grationofdifferentapproachesproposedbyresearchers
andpractitionersworkinginthisfield,thusacceler-
atingtheprogressoftheknowledgeinthisscientific
domain.
3.2Networkdevices
TheHeNBdevicehasbeencreatedformodelingthebase
stationofafemtocell.SimilarlytotheeNB,itisidenti-
fiedbyanuniqueIDanditspositionisdefinedintoa
Cartesiansystem.Itkeepstrackofinformationrelatedto
allregisteredUEs,liketheUEidentifier,CQIfeedbacks,
uplinkchannelquality,anduplinkschedulingrequest
Capozzi
etal.EURASIPJournalonWirelessCommunicationsandNetworking
2012,
2012
:328
http://jwcn.eurasipjournals.com/content/2012/1/328
••Page5of13
(i.e.,theamountofdatathatauserneedstotransmit,mode,havetheconsidereduserinthesubscribergroup
reportedtothetargetbasestationthroughanuplinklist.
controlmessage).
AHeNBcontainsalltheentitiesoftheE-UTRANpro-
3.4Newtopologyobjects
tocolstack(i.e.,RRC,MAC,andPHY)whichimplemen-Threenewnetworktopologyobjectshavebeenintro-
tationsdifferwithrespecttotheeNB.Inparticular,atRRCduced:
andMAClayers,enhancedfeatureshavebeenadded,e.g.,
anewhandoverproceduremoresuitableforheteroge-
Femtocell:ithasonlygeometricpropertiesanditis
neousenvironmentsandthepossibilitytoconfigurethe
usedfordetailingthepositionandtheIDofa
HeNBinbothclosedandrestrictedaccessmodes(see
femtocell.
Section3.3fordetails).
Building:itiscomposedbyanumberofapartments,
3GPPspecificationsdonotexplicitlydefinethephysi-
eachonedelimitingtheareaofagivenfemtocell.As
calpowertransmissionofaHeNB.However,wesetthe
definedin[34],twodifferenttypesofbuildinghave
defaultvalueofthemaximumtransmissionpowerequal
beendeveloped:(a)DualStripeblocksand(b)
5
×
5
to20dBm,accordingtosuggestionsreportedin[32].
apartmentgrid(seeFigure2).Theformerconsistsin
Obviously,thisisnotastandardizedconfiguration:the
twobuildingscomposedoftworowsof10
powertransmissionofthebasestationcouldbesettaking
apartmentseach.Thelatter,instead,isabuilding
intoaccountconditionsofbothsurroundingenvironment
composedof25apartmentslocatedovera
5
×
5
grid.
andnetwork.Tocopewiththisrequirement,LTE-sim
EachbuildingisidentifiedbyanuniqueIDandits
allowstheusertofreelychangeinastaticordynamical
positionisdefinedintoaCartesiansystem.Forboth
fashionthepowertransmissionoftheHeNB,accordingto
itsneeds.
Aslightenhancementhasbeenappliedalsototheclass
modelingtheUE.WithrespecttotheoldLTE-simimple-
mentation,weintroducedabooleanflag,updatedevery
timetheuserpositionchanges.Suchaflagisusedforrec-
ognizingwhetheraUEisinsideoroutsideabuildingata
certaintimeinstant;notethatthisinformationisfunda-
mentaltocatchpropagationlossesduetowallsbetween
thetransmitterandthereceiver.
3.3Newhandovermanagement
Whileausermovesalongacertainpath,the
handover
manager
hasthedutyofperformingcellre-selectionand
hardhandoverprocedures.Itisimplementedintothe
RRCentityasproposedin[33].
Initspreliminarilyversion,LTE-simsupportedonly
a
position-based
handoverprocedure,whichwasused
topickasservingnodetheclosesteNB.Inhomoge-
neousscenarios,wherealltheeNBstransmitatthe
samepowerandaspacefreepathlossmodelcanbe
considered,thiskindoftechniquewellapproximatesa
genericpolicybasedonthereceivedpower.Obviously,
thisbecomesunfeasibleinheterogeneousscenarioslike
theonesincludingbuildingsandfemtocells.
Forthisreason,weconceivedanewstrategythatfor
eachnodeselects,astargetbasestation,theoneproviding
thestrongestreceivedsignal.
Furthermore,inordertocopewithseveralaccesspoli-
cies,aspecialstructureiscreatedfortheMAClayerofthe
HeNB.Itcontainstheidentifiersoftheauthorizedusers
(i.e.,thesocalledsubscribergroup[20]).Accordingly,the
handoveralgorithmallowsagivenusertojoinonlythose
cellsthateitherworkinopenmodeor,beinginrestricted
(a)
(b)Figure2
Availablebuildingconfigurations:
(a)
DualStripe
blocksand
(b)
5
×
5
apartmentgrid.
Capozzi
etal.EURASIPJournalonWirelessCommunicationsandNetworking
2012,
2012
:328
http://jwcn.eurasipjournals.com/content/2012/1/328
•theaforementionedbuildingtypes,itispossibleto
definethenumberoffloors.Eachapartmenthasa
squaredformandanareaof100m
2
.
Ingeneral,eachapartmentcontainsuptooneactive
femtocell,i.e.,anactiveHeNBisworkinginthe
femtocell.Thismeansthat,forinstance,a
5
×
5
grid
buildingcancontainupto25femtocells.The
presenceofanactivefemtocellinasingleapartment
canberandomlydecidedthroughthedefinitionofan
activityratio[34],thatistheprobabilitythatanactive
homebasestationispresentinanapartment.
Street:itmodelstworowsofbuildingslocatedalong
awideroad.Itsgeometricparameters(e.g.,thestreet
width,thedistancebetweentwoadjacentbuildings,
andthenumberofbuildingalongthestreet)canbe
easilycustomizedbasedonthesimulationneeds.
Asanexample,Figure3showsatypicalurbancross
composedoffourdifferentstreetsand5
×
5gridbuildings
objects.
Inaddition,wewouldliketoremarkthatthedevel-
opedsimulatorisflexibleand,asaconsequence,itcanbe
extendedforintegratingrealstreetmaps.Thiswouldbe
veryusefulforinvestigatingmorerealisticenvironments.
Figure3
Exampleofacrosscomposedoffourdifferentstreets
and
5
×
5
gridbuildings.
Page6of13
3.5Channelmodels
The
Channel
moduleofthesimulatorhandlespacket
transmissionsandmodelsthepropagationlossbymeans
fourdifferentphenomenaassuggestedin[35]:(i)thepath
loss,(ii)thepenetrationloss,(iii)theshadowing,and(iv)
thefastfadingduetothesignalmultipath.
Forauserlocatedinabuildingandservedbythebase
stationofamacrocell,thepathlosscalculationtakesin
considerationalsoanadditionalattenuationfactordue
tothepresenceofanexternalwall(defaultvalueofthe
externalwallattenuationis20dB[34]).
Moreover,inordertocopewiththepeculiarfeatures
offemtocells,twonewpathlossmodelshavebeenintro-
duced.Thefirstoneistheindoorpropagationmodel
definedin[34]foradenseurbandeploymentoffem-
tocells.Itevaluatesthepathloss,
P
L
,consideringonly
thedistance,
R
,betweenthetransmitterandthereceiver
expressedinmeters:
P
L
[dB]
=
127
+
30
·
log
10
(
R
/
1000
)
.(1)
Thesecondonehasbeendevelopedwithinthe
WinnerII
projectforindoorresidentialenvironments[36].Itoffers
ahighaccuracyatthecostofanincreasedcomputational
complexity:
fcP
L
[dB]
=
A
·
log
10
(
R
)
+
B
+
C
·
log
10
+
X
;(2)
5where
R
isexpressedinmeters;thecentralfrequency
f
c
isexpressedingigahertz;thevaluesofotherparameters
A
,
B
,and
C
dependonthenumberofwallsandfloors
betweenthetransmitterandthereceiver.
Itisimportanttoremarkthatthequalityofthesig-
nalreceivedbyusersinsideabuildingdependsonhow
thebandwidthissharedamongfemtocells.Toinvestigate
thisconcept,wecomparedthedistributionofsignal-
to-interferenceplusnoiseratio(SINR)providedbythe
WinnerII
channelmodelinsidea5
×
5apartmentgrid,
supposingtoassignthespectrumbymeansofthereuse-1
(i.e.,allfemtocellssharethesamebandwidthof20MHz)
andthereuse-1/2scheme(i.e.,twoportionsofthespec-
trum,of10MHzeach,aredistributedamongHeNBs
imposingthattwoadjacentfemtocellscannotworkonthe
sameoperativebandwidth).FromFigure4,itisevident
thattheadoptionofafrequencyreuseschemeimproves
thechannelqualityperceivedbyusers.Infact,bydis-
tributingthewholespectrumamongHeNBs,itispossible
toreducetheinterferencelevel.However,thisadvantage
couldbereachedatthecostofthenetworkthroughput
(e.g.,thehigherthenumberofportionsofthespectrum
consideredduringthefrequencyplanningstrategy,the
loweristhebandwidthavailableforeachfemtocell).Such
aspectswillbebetterdiscussedinSection4.1.
Capozzi
etal.EURASIPJournalonWirelessCommunicationsandNetworking
2012,
2012
:328
http://jwcn.eurasipjournals.com/content/2012/1/328
0402020
0-20y
4035035202510120100-20-10
x)(a403836343230282624220-1020
20
10-20-100
18
y-20x(b)Figure4
SINRmeasuredinsideabuildingwith:(a)nofrequencyreuseand(b)
reuse-1/2
scheme.
4002002
10
Page7of13
4Workingwiththeproposedmodule
downlinktrafficmixcomposedbyonevideoflow,one
Inthissection,weprovideanoverviewaboutsomeoftheVoIPflow,andonebesteffortflow.
possiblestudiesthatcanbecarriedoutusingoursimula-Forthevideoapplication,weusedatraffictrace
tionframework.Tothisend,theimpactofco-layerinter-obtainedfromatestsequence(i.e.,“foreman.yuv”)avail-
ferenceinindoorenvironmentsgeneratedamongHeNBableat[37].Theoriginalsequence(at25frame/s,
aswellastheperformancegainscomingfromfemtocellCIFresolution352
×
288,andYUVformat)hasbeen
deploymentinanurbanscenariohavebeenanalyzed.Atfirstlyrepeatedforthewholesimulationtime.Then,the
last,ascalabilitystudyaboutcomputationalrequirementsobtainedvideohasbeencompressedusingH.264stan-
(i.e.,simulationtimeandmemoryusage)ofthesimulatordardcompressionattheaveragecodingrateof440kbps.
isalsoprovided.SimulationparametersaresummarizedInstead,forG.729voiceflows,weadoptedanON/OFF
inTable1.Markovmodel,wheretheONperiodisexponentiallydis-
tributedwithmeanvalue3s,andtheOFFperiodhasa
4.1Studyingtheimpactofco-layerinterferenceinan
truncatedexponentialpdfwithanupperlimitof6.9sand
indoorenvironment
anaveragevalueof3s[38].DuringtheONperiod,the
Theimpactthattheco-layerinterferenceduetothecom-sourcesends20byteslongpacketsevery20ms(i.e.,the
municationbetweenhomebasestationanduserhasbeensourcedatarateis8kbps),whileduringtheOFFperiod
evaluatedinanindoorscenariocomposedbyasingle5
×
5therateiszerobecauseweassumethepresenceofavoice
apartmentgrid.activitydetector.Finally,forthebesteffortflowswehave
Theanalysishasbeencarriedoutbyconsideringthreeconsideredinfinitebuffersources.
differentfrequencyreuseschemes,e.g.,thereuse-1,theForalltheaforementionedspectrumconfigurations,we
reuse-1/2,andthereuse-1/4
b
,andbyimposingtohavecomparedthebehaviorofwell-knownpacketschedulers:
ineachapartment8UEsreceivingatthesametimeatheproportionalfair(PF)[3],thelogarithmic(LOG)rule
Capozzi
etal.EURASIPJournalonWirelessCommunicationsandNetworking
2012,
2012
:328
http://jwcn.eurasipjournals.com/content/2012/1/328
Table1Simulationparameters
Parameter
Totalbandwidth
eNBpowertransmission
HeNBpowertransmission
CQIApartmentsize
#apartmentsinabuilding
Radiusofthemacrocell
#buildings
FrequencyReuseScheme
#users
Scheduler
fficraT
Page8of13
IndoorenvironmentUrbanscenarioScalabilitytest
Hz0M243dBm,equallydistributedamongsub-channels
20dBm,equallydistributedamongsub-channels
Fullbandwidthandperiodicreportingscheme.Measuredperiod:2ms.
100m
2
100m
2
100m
2
252525
N.A.500m500m
156from1to6
reuse-1,reuse-1/2,andreuse-1/4reuse-1reuse-1
8perHeNBfrom40to120from0to300
PF,LOGrule,andFLSPFPF
Video,VoIP,andbest-effortbest-effortbest-effort
[39],andtheframelevelscheduler(FLS)[40,41]).Inpar-Togainafurtherinsight,weevaluatedtheJainfairness
ticular,networkperformancehasbeenevaluatedwithindex[42],findingthatitishigherthan0.8inallconsid-
referencetothethroughputachievedbybesteffortflowseredconditions.Thismeansthatneitherthefrequency
andthepacketlossrate(PLR)ofmultimediaones(i.e.,reusestrategynortheschedulingalgorithmaffectsthe
videoandVoIP).fairnessinbandwidthsharingofbesteffortflows.
FromFigure5itispossibletonotethatthethroughputFigure6reportsthePLRofvideoflows,showingthat,
ofbesteffortflowscanbemaximizedusingthereuse-thereuse-1/2isabletoprovidethebestQoS.
1/2scheme,whichisabletoprovidethebesttrade-offMoreover,inlinewithresultspresentedin[40],the
betweenthebandwidthavailableineachfemtocellandtheFLSapproach,whichhasbeendesignedforguaranteeing
interferencelevelproducedbyHeNBsinsidethebuilding.boundeddelaystomultimediaflows,providesthelowest
Theadoptionofthereuse-1/4schemeproducesalwaysPLR.Thus,itensuresthehighestvideoqualitytomobile
theworstnetworkperformance.Infact,despiteenor-users.Thisperformancegaincomesattheexpenseofper-
mousbenefitsthatthereuse-1/4schemeoffersintermsformanceexperiencedbybesteffortflows,whichasmaller
ofSINR(duetotheverylimitedleveloftheco-layeramountofbandwidthisassignedtowhenFLSisuse(see
interference),itimposesthateachHeNBusesasmallFigure5).
bandwidth,thusdecreasingtheoverallachievablesystemWithreferencetoVoIPflows,weobservedthatthey
throughput.achievedsmallerPLRvaluesthantheonesrelatedto
50PF45LOG RULE
FLS4035305202510150
1/11/21/4
Frequency Reuse Scheme
Figure5
Aggregatecellthroughputforbesteffortflowswithdifferentfrequencyreuseschemes.
Capozzi
etal.EURASIPJournalonWirelessCommunicationsandNetworking
2012,
2012
:328
http://jwcn.eurasipjournals.com/content/2012/1/328
210
101
010
-1101/11/2
Frequency Reuse Scheme
Figure6
PLRofvideoflowswithdifferentfrequencyreuseschemes.
14/
PFLOG RULE
SLF
Page9of13
videoswithoutanynoticeabledifferencesamongallcon-Simulationswerecarriedoutvaryingthenumberofusers,
sideredschedulingapproaches(thePLRislessthat5%eachonereceivingadownlinkflowmodeledwithan
whenthereuse-1schemeisused;0%otherwise).Therea-infinitebuffersource.
sonisthatsuchapplicationsgetahigherpriorityfromtheFigure8showstheaverageuserthroughputofoutdoor
schedulerbecausetheyhavealowersourcebitrate.andindoorusers.
WecanconcludethatthetypicalproblemconnectedInthetypicalurbanscenariowithoutfemtocells,indoor
tointerferencemanagement,asalreadyexplainedinuserswillbeanywayservedbythemacrocellsufferingfor
Section2,liesintheunpredictabilityofthedeployedsce-lowchannelqualityduetothestronginfluenceofwall
nario.Infact,inadenseurbanenvironmentthenetworkattenuation.Introducingfemtocellsinsidethebuildings,
operatorcouldnothaveenoughinformationabouttheindooruserswillexperiencesignificantincreaseinterms
femtocelldensityandtheHeNBspositionsineachbuild-ofthroughput.Performanceofoutdoorusers,onthe
ing.Thus,thepossibilitytoapplyanykindoffrequencyotherhand,shouldnottakeanyadvantageintermsof
planningstrategyvanishes.Therefore,theproposedsce-experiencedSINR.Infact,whenhomebasestationsand
narioisusuallyconsideredforinvestigatingtheimpactofeNBssharethesamebandwidth,outdooruserslocated
differentdynamicspectrumallocationpoliciesforinter-nearbythebuildingwillsensehighlevelofinterfer-
ferenceavoidanceinfemtocellenvironments,andthepro-encewithconsequentperformancelosses.Nevertheless,
posedanalysisrepresentsavalidstartingpointforstudies
inthisdirection.
4.2Capacityenhancementinurbanenvironment
Now,weinvestigatetheimpactofthefemtocelldeploy-
mentinurbanenvironments.Tothisend,wedesigned
ascenarioconsistingofonemacrocelland56buildings
locatedasinatypicalurbancross(seeFigure7).
TheeNBislocatedatthecenterofthemacrocellandit
transmitsusinganomni-directionalantennaina20MHz
bandwidth.Twodifferentcasesareobjectofthestudy:
•
traditionalurbanenvironmentwithoutfemtocells
whereonlyonemacrocellandbuildingsareusedas
referencecase;
•
urbanenvironmentwithfemtocellswhereone
macro cell
femtocellperapartmentisassumedtobeactiveand
Figure7
Simulatedscenariowithacrossdesignedwith4
workingonthesameoperativebandwidthof
differentstreetsand
5
×
5
gridbuildings.
themacrocell.
street1
eBN
building,
5x5 apartmentgrid
street3
Capozzi
etal.EURASIPJournalonWirelessCommunicationsandNetworking
2012,
2012
:328
http://jwcn.eurasipjournals.com/content/2012/1/328
210110010
-110
-210
201101010
1-10
40 UEs
80 UEs
120 UEs
no femtocells
40 UEs
80 UEs
120 UEs
Scenario
(a)
-210no femtocells
Scenario
)b(Figure8
Averagethroughputfor:(a)outdoorand(b)indoorusers.
with femtocells
with femtocells
Page10of13
Figure8demonstratesthatperformanceofoutdoorusersTheinvestigatedLTEnetworkiscomposedofone
improveaswell.Thisapparentlycounterintuitiveresultismacrocellandanumber,
N
,ofbuildings,with
N
rang-
mainlyduetothemacrocellunloadingeffectcontributedingfrom1to6.Buildingsareuniformlydistributedinside
bytheintroductionoffemtocells(seeSection2).Inotherthemacrocelland,ineachofthem,25femtocellsare
words,acertainnumberofusersisservedbyHeNBsandenabled.Simulationshavebeencarriedoutconsideringa
theamountofresourcesavailableforremainingoutdoorfixednumberofUEsequalto30thatbelongtothemacro-
usersconsequentlyincreases.cellandvaryingthenumberofUEsineachbuildingin
Finally,Figure9showsthattheoverallsystemcapac-therange[10–50].Oneactivedownlinkflowwithinfinite
itycanbegreatlyimprovedthankstotheadoptionofbuffercharacteristicsisconsideredpereachUE.More-
femtocells.over,asimulationtimeof30sisconsidered.Withthese
Wehighlight,onceagain,thattheproposedstudiesaimconditions,the“lightest”scenariowillbecomposedof26
atshowinghowourmodulecanbeeasilyusedtoinves-cellsand40users,whereasthe“heaviest”onewillembrace
tigatethemainissuesrelatedtothedeploymentoffem-151cellsand330users.
tocells.Wethinkthat,startingfromthisbasicscenario,Thechoicetouseinfinitebufferapplications(i.e.,there
severalnoveltechniquescanbetestedandcompared.isalwaysapacketstotransmit)isusefultoevaluatethe
simulatorbehaviorunderstrenuousconditions.
4.3Scalabilitytest
Figure10showstimeandmemoryrequiredintheafore-
Asfinalaspect,weproposeascalabilityanalysisofthementionedscenarios.Programexecutiontimelinearly
proposedmoduleintermsofbothsimulationtimeandincreaseswithboththenumberofbuildingsandthe
memoryusageonaLinuxmachinewitha2.6GHzCPUnumberofusers.Nevertheless,itremainslimitedalsoin
and4GBytesofRAM.scenarioswiththehighestcomputationalload.
Access to the YouScribe library is required to read this work in full.
Discover the services we offer to suit all your requirements!