Oribatid mites (Oribatida, Acari) in the forests of the northeastern lowlands of Germany and their reaction to different aspects of forest conversion [Elektronische Ressource] / vorgelegt von Eileen Kreibich
221 Pages
English
Downloading requires you to have access to the YouScribe library
Learn all about the services we offer

Oribatid mites (Oribatida, Acari) in the forests of the northeastern lowlands of Germany and their reaction to different aspects of forest conversion [Elektronische Ressource] / vorgelegt von Eileen Kreibich

-

Downloading requires you to have access to the YouScribe library
Learn all about the services we offer
221 Pages
English

Description

Oribatid mites (Oribatida, Acari) in the forests of the northeastern lowlands of Germany and their reaction to different aspects of forest conversion Inauguraldissertation Zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat. an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität vorgelegt von Eileen Kreibich geboren am 11. Februar 1974 in Marienberg Dekan: ………………………………… Erstgutachter: ………………………………… Zweitgutachter: Tag der Promotion: i ___________________________________________________________________________ Contents 1 INTRODUCTION..............................................................................................................1 2 METHODS........................................................................................................................4 2.1 Sampling.................................................................................................................................................................... 5 2.2 Extraction and sorting ............................................................................................................................................. 7 2.3 Preparation and determination..................................................................................................................

Subjects

Informations

Published by
Published 01 January 2007
Reads 42
Language English
Document size 11 MB

Exrait


Oribatid mites (Oribatida, Acari) in the forests of the northeastern
lowlands of Germany and their reaction to different aspects of forest
conversion





Inauguraldissertation

Zur Erlangung des akademischen Grades
Doctor rerum naturalium (Dr. rer. nat.
an der Mathematisch-Naturwissenschaftlichen Fakultät
der Ernst-Moritz-Arndt-Universität






vorgelegt von Eileen Kreibich
geboren am 11. Februar 1974 in Marienberg












































Dekan: …………………………………
Erstgutachter: …………………………………
Zweitgutachter:
Tag der Promotion: i
___________________________________________________________________________
Contents

1 INTRODUCTION..............................................................................................................1
2 METHODS........................................................................................................................4
2.1 Sampling.................................................................................................................................................................... 5
2.2 Extraction and sorting ............................................................................................................................................. 7
2.3 Preparation and determination............................................................................................................................... 8
2.4 Abiotic data............................................................................................................................................................... 9
2.4.1 Climatic data ......................................................................................................................................................... 9
2.4.2 Soil water content.................................................................................................................................................. 9
2.4.3 Acidity (pH) 9
2.4.4 C/N ratio.............................................................................................................................................................. 10
2.4.5 Soil profiles....................................... 10
2.4.6 Climate data..................................... 11
2.5 Statistical analysis................................................................................................................................................... 11
2.5.1 Abundance.................................... 11
2.5.2 Dominance 11
2.5.3 Constancy and frequency .................................................................................................................................... 12
2.5.4 Diversity (Shannon-Weaver-index)..................................................................................................................... 12
2.5.5 Evenness ............................................................................................................................................................. 13
2.5.6 Jaccard index....................................................................................................................................................... 13
2.5.7 Renkonen index................................................................................................................................................... 13
2.5.8 Wainstein index................................................................................................................................................... 14
2.5.9 Cluster analysis ................................................................................................................................................... 14
2.5.10 Correlation-analysis according to SPEARMAN ................................................................................................ 14
2.5.11 Correspondence analysis................................................................................................................................ 14
2.6 Area-based analysis of the horizontal distribution .............................................................................................. 15
3 SAMPLING AREA .........................................................................................................16
3.1 The Müritz NP........................................................................................................................................................ 16
3.2 Eberswalde.............................................................................................................................................................. 19
4 RESULTS AND DISCUSSION.......................................................................................22
4.1 The characterisation of the sampling plots........................................................................................................... 22
4.1.1 The young pine stand on plot M-pi-yng .............................................................................................................. 22
4.1.2 The medium aged pine stand on plot M-pi-med.................................................................................................. 23
4.1.3 The medium aged mixed stand on plot M-pibe-med1......................................................................................... 25
4.1.4 The medium aged mixed stand on plot M-pibe-med2......... 27
4.1.5 The older mixed stand on plot M-pibe-old1........................................................................................................ 28
4.1.6 The older mixed stand on plot M-pibe-old2 30
4.1.7 The beech stand on plot M-be-old....................................................................................................................... 32
4.1.8 The pure pine stand with high nutrient content in the soil E-pi-med1................................................................. 33
4.1.9 The pure pine stand with medium nutrient content in the soil on plot E-pi-med2............................................... 35
4.1.10 The mixed stand with a high nutrient content in the soil on plot E-pibe-med1.............................................. 36
4.1.11 The mixed stand with a medium nutrient content in the soil on plot E-pibe-med2 ........................................ 38
4.1.12 The beech stand on plot E-be-med.................. 39 ii
___________________________________________________________________________
4.2 Climate .................................................................................................................................................................... 40
4.3 Development direction of soil, humus and abiotic data within the different treatments .................................. 42
4.3.1 Treatment “Forest conversion”............................................................................................................................ 42
4.3.2 Treatment “Age stages” ...................................................................................................................................... 43
4.3.3 Treatment “Nutrient content of the soil” ............................................................................................................. 44
4.4 Investigation of the horizontal distribution in 2002............................................................................................. 45
4.4.1 Soil water content................................................................................................................................................ 47
4.4.2 pH values ............................................................................................................................................................ 48
4.4.3 C/N ratio........................................ 49
4.4.4 Thickness of the humus layer.............................................................................................................................. 50
4.5 The ecological characteristics of each studied species ......................................................................................... 52
4.5.1 Hypochthonioidea BERLESE, 1910....................................................................................................................... 52
4.5.1.1 Hypochthoniidae BERLESE, 1910 .............................................................................................................. 52
4.5.1.2 Eniochthoniidae GRANDJEAN, 1947 .......................................................................................................... 55
4.5.1.3 Mesoplophoridae EWING, 1917................................................................................................................. 57
4.5.2 Phthiracaroidea PERTY, 1841............................................................................................................................... 57
4.5.2.1 Phthiracaridae PERTY, 1841 ...................................................................................................................... 57
4.5.3 Euphthiracaroidea JACOT, 1930 59
4.5.3.1 Euphthiracaridae JACOT, 1930 .................................................................................................................. 59
4.5.4 Malaconothroidea BERLESE, 1916 ....................................................................................................................... 65
4.5.4.1 Trhypochthoniidae WILLMANN, 1931 ....................................................................................................... 65
4.5.5 Crotonioidea THORELL, 1876.... 66
4.5.5.1 Nothridae Berlese, 1896 ........................................................................................................................... 66
4.5.5.2 Camisiidae Oudemans, 1900 .................................................................................................................... 69
4.5.6 Nanhermannioidea SELLNICK, 1928 .................................................................................................................... 74
4.5.6.1 Nanhermanniidae SELLNICK, 1928............................................................................................................ 74
4.5.7 Cepheoidea Berlese, 1896............................ 77
4.5.7.1 Cepheidae Berlese, 1896................... 77
4.5.8 Eremaeoidea Oudemans, 1900............................................................................................................................ 79
4.5.8.1 Eremaeidae Oudemans, 1900............. 79
4.5.9 Caleremaeoidea GRANDJEAN, 1965 ..................................................................................................................... 80
4.5.9.1 Caleremaeidae Grandjean, 1965 ............................................................................................................... 80
4.5.10 Gustavioidea Oudemans, 1900....................................................................................................................... 80
4.5.10.1 Astegistidae BALOGH, 1961 ...................................................................................................................... 80
4.5.10.2 Liacaridae Sellnick, 1928 ......................................................................................................................... 82
4.5.10.3 Peloppiidae Balogh, 1943......................................................................................................................... 85
4.5.11 Carabodoidea C.L. Koch, 1843...................................................................................................................... 86
4.5.11.1 Carabodidae C.L. Koch, 1843............... 86
4.5.12 Tectocepheoidea GRANDJEAN, 1954............................................................................................................... 91
4.5.12.1 Tectocepheidae Oudemans, 1900 ............................................................................................................. 91
4.5.13 Oppioidea Grandjean, 1951..................... 94
4.5.13.1 Quadroppiidae BALOGH, 1983 .................................................................................................................. 94
4.5.13.2 Oppiidae Grandjean, 1951................. 97
4.5.13.3 Autognetidae Grandjean, 1960............ 107
4.5.14 Cymbaeremaeoidea SELLNICK, 1928............................................................................................................ 107
4.5.14.1 Cymbaeremaeidae SELLNICK, 1928......................................................................................................... 107 iii
___________________________________________________________________________
4.5.14.2 Micreremidae Grandjean, 1954 .............................................................................................................. 108
4.5.15 Licneremaeoidea GRANDJEAN, 1931 ............................................................................................................ 109
4.5.15.1 Licneremaeidae GRANDJEAN, 1931......................................................................................................... 109
4.5.16 Phenopelopoidea Petrunkevich, 1955 .......................................................................................................... 109
4.5.16.1 Phenopelopidae PETRUNKEVICH, 1955.................................................................................................... 109
4.5.17 Achipterioidea THOR, 1929 .......................................................................................................................... 113
4.5.17.1 Achipteriidae THOR, 1929....................................................................................................................... 113
4.5.18 Oribatelloidea Jacot, 1925............................................................................................................................ 115
4.5.18.1 Oribatellidae JACOT, 1925 115
4.5.19 Galumnoidea JACOT, 1925 ........................................................................................................................... 117
4.5.19.1 Galumnidae Jacot, 1925.......................................................................................................................... 117
4.5.20 Ceratozetoidea JACOT, 1925......................................................................................................................... 121
4.5.20.1 Ceratozetidae JACOT, 1925...................................................................................................................... 121
4.5.20.2 Chamobatidae Grandjean, 1954.............................................................................................................. 123
4.5.20.3 Mycobatidae Grandjean, 1954................................................................................................................ 127
4.5.20.4 Euzetidae Grandjean, 1954..................................................................................................................... 127
4.5.21 Oripodoidea Jacot, 1925 .............................................................................................................................. 128
4.5.21.1 Scheloribatidae GRANDJEAN, 1933.......................................................................................................... 128
4.5.21.2 Oribatulidae ............................................................................................................................................ 132
4.5.22 Discussion.................................................................................................................................................... 135
4.6 The oribatid mite communities and their reactions to different forestry factors............................................ 137
4.6.1 The dominance structure of the oribatid mite communities of each plot........................................................... 138
4.6.1.1 The young pine stand.............................................................................................................................. 138
4.6.1.2 The medium aged pine stands................................................................................................................. 139
4.6.1.3 The medium aged mixed stands with young beech undergrowth ........................................................... 144
4.6.1.4 The medium aged mi with older beech undergrowth ............................................................. 147
4.6.1.5 The older mixed stands........................................................................................................................... 150
4.6.1.6 The beech stands..................................................................................................................................... 152
4.6.1.7 Discussion............................................................................................................................................... 155
4.6.2 Forest conversion .............................................................................................................................................. 156
4.6.2.1 Results .................................................................................................................................................... 156
4.6.2.2 Discussi.......................... 160
4.6.3 The influence of the age of different forest stands ............................................................................................ 164
4.6.3.1 Results............................ 164
4.6.3.2 Discussi.......................... 166
4.6.4 The influence of the nutrient content of the soil in different forest stands ........................................................ 167
4.6.4.1 Results............................ 167
4.6.4.2 Discussion............................................................................................................................................... 169
5 CONCLUDING DISCUSSION......................................................................................171
6 SUMMARY...................................................................................................................179
Zusammenfassung................................................................................................................................................................ 181
7 REFERENCES.............................................................................................................183
8 APPENDIX204
ACKNOWLEDGMENT.........................................................................................................209 iv
___________________________________________________________________________
LIST OF FIGURES

Fig. 1: Soil corer...................................................................................................................................................... 6
Fig. 2: The beech plot as an example for the sampling pattern of the horizonatl distribution ................................ 6
Fig. 3: Extraction device according to MACFADYEN............................................................................................... 7
Fig. 4: Geographic position of the two sampling areas......................................................................................... 16
Fig. 5: Map of the Müritz NP (Source: www.nationalpark-mueritz.de) ............................................................... 16
Fig. 6: Geographic location of the plots in the Müritz NP area (plots inside the natural zone of the NP) ............ 17
Fig. 7: phic lo plhNP area (plots outside the of the NP) .......... 18
Fig. 8: Plot M-pi-yng ............................................................................................................................................ 22
Fig. 9: Soil profile of plot M-pi-yng ..................................................................................................................... 23
Fig. 10: Plot M-pi-med.......................................................................................................................................... 24
Fig. 11: Soil profile of plot M-pi-med................................................................................................................... 24
Fig. 12: Plot M-pibe-med1.................................................................................................................................... 25
Fig. 13: Soil profile of plot M-pibe-med1............................................................................................................. 26
Fig. 14: Plot M-pibe-med2 27
Fig. 15: Soil profile of plot M-pibe-med2 28
Fig. 16: Plot M-pibe-old1................................ 28
Fig. 17: Soil profile of plot M-pibe-old1......................... 29
Fig. 18: Plot M-pibe-old2 30
Fig. 19: Soil profile of plot M-pibe-old2 31
Fig. 20: Plot M-be-old........................................................................................................................................... 32
Fig. 21: Soil profile of plot M-be-old.................................................................................................................... 33
Fig. 22: map of the UNESCO biosphere reserve "Schorfheide-Chorin" (source: www.schorfheide-chorin.de) .. 19
Fig. 23: Geographic location of the plots in the Eberswalde area......................................................................... 21
Fig. 24. Plot E-pi-med1......................................................................................................................................... 33
Fig. 25: Soil profile of plot E-pi-med1.................................................................................................................. 34
Fig. 26: Plot E-pi-med2 35
Fig. 27: Soil profile of plot E-pi-med2 36
Fig. 28: Plot E-pibe-med1..................................................................................................................................... 36
Fig. 29: Soil profile of plot E-pibe-med1.............................................................................................................. 37
Fig. 30: Plot E-pibe-med2 38
Fig. 31: Soil profile of plot E-pibe-med2 39
Fig. 32: Plot E-be-med .......................................................................................................................................... 39
Fig. 33: Soil profile of plot E-be-med................................................................................................................... 40
Fig. 34: Climate data for Eberswalde; monthly mean of the temperature in °C (measured 2m above the ground)
and of the precipitation (in mm); 10 °C = 20 mm ....................................................................................... 41
Fig. 35: Climate data for the Müritz-NP; monthly mean of the temperature in °C (measured 2m above the
ground) and of the precipitation (in mm); 10 °C = 20 mm.......................................................................... 42
Fig. 36: Small scale map with the horizontal sampling scheme of plot E-pi-med2 .............................................. 46
Fig. 37: Small ahorizontal sampme of plot E-pibe-med2 .......................................... 46
Fig. 38: Small scale map with the horizontal sampling scheme of plot E-be-med................................................ 47
Fig. 39: Horizontal distribution of the soil water content as measured from the samples; a) E-pibe-med2, b) E-
pibe-med2, c) E-be-med .............................................................................................................................. 48
Fig. 40: Horizontal distribution of the pH values as measured from the samples; a) E-pibe-med2, b) E-pibe-
med2, c) E-be-med ...................................................................................................................................... 49
Fig. 41: Horizontal distribution of the C/N ratio as measured from the samples; a) E-pibe-med2, b) E-pibe-med2,
c) E-be-med ................................................................................................................................................. 50
Fig. 42: Thickness of the humus layer as measured in each sampling spot; a) E-pi-med2; b) E-be-med ............. 51
Fig. 43: a) Abundance [ind./m²] and b) frequency of H. rufulus in all plots; * sampled also in 2002 .................. 53
Fig. 44: Horizontal distribution of H. rufulus on a) plot E-pi-med2, b) plot E-pibe-med2 and c) plot E-be-med 54
Fig. 45: a) Abundance [ind./m²] and b) frequency of E. minutissimus on all plots; * sampled also in 2002 ........ 56
Fig. 46: Horizontal distribution of E. minutissimus on plots a) E-pi-med2, b) E-pibe-med2 and c) E-be-med in
2002............................................................................................................................................................. 56
Fig. 47: Horizontal distribution of E. cribrarius on plot E-be-med ...................................................................... 60
Fig. 48: a) Abundance [ind./m²] and b) frequency of M. minima on all plots; * sampled also in 2002................ 61
Fig. 49: Horizontal distribution of M. minima on plot a) E-pi-med2, b) E-pibe-med2 and c) E-be-med.............. 61
Fig. 50: a) Abundance [ind./m²] and b) frequency of R. duplicata in all plots; * sampled also in 2002............... 64
Fig. 51: Horizontal distribution of R. duplicata on plot a) E-pi-med2, b) E-pibe-m-be-med ........... 64
Fig. 52: Horizontal distribution of T. tectorum on plot E-pi-med2 ....................................................................... 65 v
___________________________________________________________________________
Fig. 53: a) Abundance [ind./m²] and b) frequency of N. silvestris in all plots; * sampled also in 2002 ............... 67
Fig. 54: Horizontal distribution of N. silvestris on plot a) E-pi-med2, b) E-pibe-med2 and c) E-be-med ............ 68
Fig. 55: a) Abundance [ind./m²] and b) frequency of C. spinifer in all plots; * sampled also in 2002 ................. 70
Fig. 56: Horizontal distribution of C. spinifer on plot E-pibe-med2..................................................................... 71
Fig. 57: a) Abundance [ind./m²] and b) frequency of P. peltifer in all plots; * sampled also in 2002 .................. 73
Fig. 58: Horizontal distribution of P. peltifer on plot a) E-pi-med2, b) E-pibe-med2 and c) E-be-med ............... 73
Fig. 59: a) Abundance [ind./m²] and b) frequency of N. nana in all plots; * sampled also in 2002...................... 76
Fig. 60: Horizontal distribution of N. nana on plot a) E-pi-med2, b) E-pibe-med2 and c) E-be-med .................. 76
Fig. 61: a) Abundance [ind./m²] and b) frequency of C. cepheiformis in Eberswalde; * sampled also in 2002 ... 78
Fig. 62: Horizontal distribution of C. cepheiformis on plot a) E-pi-med2, b) E-pibe-med2 ................................. 78
Fig. 63: a) Abundance [ind./m²] and b) frequency of C. bicultrata in all plots, * sampled also in 2002 .............. 81
Fig. 64: Horizontal distribution of C. bicultrata on plot a) E-pi-med2, b) E-pibe-med2 and c) E-be-med........... 82
Fig. 65: a) Abundance [ind./m²] and b) frequency of A. ovatus in all plots; * sampled also in 2002 ................... 82
Fig. 66: Horizontal distribution of A. ovatus on plot a) E-pi-med2, b) E-pibe-med2 and c) E-be-med ................ 83
Fig. 67: a) Abundance [ind./m²] and b) frequency of C. areolatus in the Müritz-NP........................................... 86
Fig. 68dance [indd b) frequency of C. ornatus in all plots; * sampled also in 2002 ................. 89
Fig. 69: Horizontal distribution of C. ornatus on plot a) E-pi-med2, b) E-pibe-med2 and c) E-be-med .............. 90
Fig. 70: a) Abundance [ind./m²] and b) frequency of T. v. velatus in all plots; * sampled also in 2002 ............... 93
Fig. 71: Horizontal distribution of T. v. velatus on plot a) E-pi-med2, b) E-pibe-med2 and c) E-be-med............ 94
Fig. 72: Horizontal distribution of Q. monstruosa on plot a) E-pibe-med2 and b) E-be-med............................... 95
Fig. 73: a) Abundance [ind./m²] and b) frequency of Q. quadricarinata in all plots; * sampled also in 2002 ..... 95
Fig. 74: Horizontal distribution of Q. quadricarinata on plot a) E-pi-med2, b) E-pibe-med2 and c) E-be-med .. 96
Fig. 75: a) Abundance [ind./m²] and b) frequency of D. ornata in Eberswalde; * sampled also in 2002............. 98
Fig. 76: Horizontal distribution of D. ornata on plot a) E-pi-med2 and b) E-pibe-med2 ..................................... 99
Fig. 77: a) Abundance [ind./m²] and b) frequency of B. sigma in all plots; * samp .................... 99
Fig. 78: Horizontal distribution of B. sigma on plot a) E-pi-med2, b) E-pibe-med2 and c) E-be-med ............... 100
Fig. 79: a) Abundance [ind./m²] and b) frequency of M. minus in all plots; * sampled also in 2002 ................. 101
Fig. 80: Horizontal distribution of M. minus on plot a) E-pi-med2, b) E-pibe-med2 and c) E-be-med .............. 102
Fig. 81: a) Abundance [ind./m²] and b) frequency of O. nova in all plots; * sampled also in 2002.................... 104
Fig. 82: Horizontal distribution of O. nova on plot a) E-pi-med2, b) E-pibe-med2 and c) E-be-med ................ 105
Fig. 83: a) Abundance and b) frequency of O. subpectinata in all plots; * sampled also in 2002 ...................... 106
Fig. 84: Horizontal distribution of O. subpectinata on plot a) E-pi-med2 and b) E-pibe-med2 ......................... 106
Fig. 85: a) Abundance [ind./m²] and b) frequency of E. hirtus in all plots; * sampled also in 2002................... 110
Fig. 86: Horizontal distribution of E. hirtus on plot a) E-pi-med2, b) E-pibe-med2 and c) E-be-med ............... 110
Fig. 87: a) Abundance [ind./m²] and b) frequency of E. torulosus in all plots; * sampled also in 2002 ............. 112
Fig. 88: Horizontal distribution of E. torulosus on plot a) E-pi-med2 and b) E-pibe-med2 ............................... 112
Fig. 89: a) Abundance [ind./m²] and b) frequency of A. coleoptrata in all plots; * sampled also in 2002.......... 114
Fig. 90: Horizontal distribution of A. coleoptrata on plot E-be-med .................................................................. 115
Fig. 91: Horizontal distribution of O. calcarata on plot a) E-pi-med2, b) E-pibe-med2 and c) E-be-med......... 116
Fig. 92: a) Abundance [ind./m²] and b) frequency of A. longipluma in all plots; * sampled also in 2002.......... 117
Fig. 93: Horizontal distribution of A. longipluma on plot a) E-pi-med2 and b) E-pibe-med2 ............................ 118
Fig. 94: a) Abundance [ind./m²] and b) frequency of G. lanceata in all plots; * sampled also in 2002.............. 119
Fig. 95: Horizontal distribution of G. lanceata on plot a) E-pi-med2, b) E-pibe-med2 and c) E-be-med .......... 120
Fig. 96: a) Abundance [ind./m²] and b) frequency of C. minimus in the Müritz NP........................................... 122
Fig. 97dance [indd b) frequency of C. cuspidatus in all plots; * sampled also in 2002........... 123
Fig. 98: a) Abundance and b) frequency of C. voigtsi in all plots....................................................................... 126
Fig. 99: Horizontal distribution of C. voigtsi on plot a) E-pi-med2 and b) E-be-med ........................................ 126
Fig. 100: a) Abundance [ind./m²] and b) frequency of S. initialis in the Müritz NP 129
Fig. 101: a) Abundance [ind./m²] quency of S. pallidulus in all plots; * sampled also in 2002 .......... 131
Fig. 102: Horizontal distribution of S. latipes on plot E-pi-med2 131
Fig. 103: a) Abundance [ind./m²] and b) frequency of O. tibialis in all plots; * sampled also in 2002 .............. 133
Fig. 104: Horizontal distribution of O. tibialis on plot a) E-pi-med2, b) E-pibe-med2 and c) E-be-med ........... 134
Fig. 105: Species-area curve for a) the Müritz-NP and b) Eberswalde in 2001.................................................. 137
Fig. 106: Comparison of the species number for one year (2001: 18 samples), two years (2000 and 2001: 33
samples) and three years (2000-2002: 69 samples) ................................................................................... 137
Fig. 107: Dominance structure of the oribatid mite community on plot M-pi-yng............................................. 138
Fig. 108: Dominance structure of the oribatid mite community on plot M-pi-med ........................................... 141
Fig. 109: Dominance structure of the oribatid mite community on plot E-pi-med1 sorted according to their
average dominance over the entire sampling period.................................................................................. 142
Fig. 110: Dominance structure of the oribatid mite community on plot E-pi-med1 sorted according to their
average dominance over the entire sampling peri.... 143
Fig. 111: Dominance structure of the oribatid mite community on plot M-pibe-med1 ...................................... 145 vi
___________________________________________________________________________
Fig. 112: Dominance structure of the oribatid mite community on plot E-pibe-med1 sorted according to their
average dominance over the entire sampling period.................................................................................. 146
Fig. 113: Dominance structure of the oribatid mite community on plot M-pibe-med2 ...................................... 148
Fig. 114: Dominance structure of the oribatid mite community on plot E-pibe-med2 sorted
average dominance over the entire sampling peri.... 149
Fig. 115: Dominance structure of the oribatid mite community on plot M-pibe-old1 ........................................ 150
Fig. 116: Domi structuretid mmplot M-pibe-old2 151
Fig. 117: Dominance structure of the oribatid mite community on plot M-be-old ............................................. 153
Fig. 118: Dominance structure of the oribatid mite community on plot E-be-med sorted according to their
average dominance over the entire sampling peri.... 154
Fig. 119: Species number and species density of the oribatid mites for each plot .............................................. 156
Fig. 120: Cluster diagram of similarities for oribatid mites assemblages of study plots, based on the Jaccard
index .......................................................................................................................................................... 157
Fig. 121: Cluster diagram of similarities for oribatid mites assemblages of study plots, based on the Renkonen
index 159
Fig. 122: Species diversity and evenness of the oribatid mites for each plot...................................................... 160
Fig. 123: Abundance of oribatid mites according to the main food source.........................................................161
Fig. 124: Cluster diagram for the Wainstein index ............................................................................................. 166
Fig. 125: Cluster diagram for the Renkonen index ............................................................................................. 169

ii
___________________________________________________________________________
List of tables
Tab. 1: Sampling scheme. Grey background - samples for succession, bold outline - samples for age structure,
dashed outline - samples for nutrition ........................................................................................................... 5
Tab. 2: Temperature progression in the extraction apparatus during the extraction ...............................................8
Tab. 3: Dominance categories according to WEIGMANN (1973)........................................................................... 12
Tab. 4: Frequency categories according to SCHWERDTFEGER (1975) ................................................................... 12
Tab. 5: Soil type, humus form and abiotic data of the plots used for the treatment succession ............................ 43
Tab. 6: humus formdata of the plots used for the treatment "age stages".......................... 44
Tab. 7: Soil type, humus formdata for the treatment "Nutrient content in the soil" 45
Tab. 8: Correlation of the abundance of H. rufulus to different factors ................................................................ 53
Tab. 9: Correlation of the abundance of E. minutissimus to different factors ....................................................... 56
Tab. 10: Correlation of the abundance of M. minima to different factors............................................................. 61
Tab. 12: Correlation of the abundance of N. silvestris to different factors ........................................................... 68
Tab. 13: Correlation of the abundance of C. spinifer to different factors 70
Tab. 14: Correlation of the abundance of P. peltifer to different .............................................................. 73
Tab. 15: Correlation of the abundance of N. nana to different factors.................................................................. 76
Tab. 16: Correlation of the abundance of C. bicultrata to different factors.......................................................... 81
Tab. 17: Correlation of the abundance of A. ovatus to different factors ............................................................... 83
Tab. 18: Correlation of the abundance of C. ornatus to different factors ............................................................. 89
Tab. 19: Correlation of the abundance of T. v. velatus to different ........................................................... 93
Tab. 20: Correlation of the abundance of Q. quadricarinata to different factors ................................................. 96
Tab. 21: Correlation of the abundance of D. ornata to different factors 98
Tab. 22: Correlation of the abundance of B. sigma to different factors .............................................................. 100
Tab. 23: Correlation of the abundance of M. minus to different factors 101
Tab. 24: Correlation of the abundance of O. nova to different factors................................................................ 104
Tab. 25: Correlation of the abundance of O. subpectinata to different factors ................................................... 106
Tab. 26: Correlation of the abundance of E. torulosus to different factors......................................................... 112
Tab. 27: Correlation of the abundance of A. coleoptrata to different factors ..................................................... 114
Tab. 28: Correlation of the abundance of A. longipluma to different factors...................................................... 117
Tab. 29: Correlation of the abundance of G. lanceata to different factors.......................................................... 120
Tab. 30: Correlation of the abundance of C. cuspidatus to different factors....................................................... 124
Tab. 31: Correlation of the abundance of C. voigtsi to different factors............................................................. 126
Tab. 32: Correlation of the abundance of S. initialis to different factors ............................................................ 129
Tab. 33: Horizontal distribution of S. latipes on plot E-pi-med2........................................................................ 130
Tab. 34: Correlation of the abundance of O. tibialis to different factors 134
Tab. 35: Abundances of the oribatid mites [ind./m²], with standard error; * significant difference to all other plots
................................................................................................................................................................... 157
Tab. 36: Abundances [ind./m²], species numbers and diversity indices (diversity after Shannon-Weaver) for each
plot............................................................................................................................................................. 165
Tab. 37: Abundance [ind./m²], species numbers and diversity (after Shannon-Weaver) of the oribatid mites of
each plot .................................................................................................................................................... 168

Appendix:
Tab. 1: Mean abundance [ind./m²] and frequency of each species for each plot for the treatment “forest conver-
sion” sorted according to their presumed habitat preference; white background: abundance, grey back-
ground: frequency; bold: * strong preference………………………………………………………………….…………204
Tab. 2: Feeding preference of the oribatid mites…………………………………………………………………………...……205
Tab. 3: Mean abundance (white background) [ind./m²] and frequency (grey background) for each species and
each plot for the treatment “age”…………………………………………………………………………………………….206
Tab. 4: b[ind./m²
each plot for the treatment “nutrient content of the soil”………………………………………………………………207
Tab. 5: Abbreviations of the species used in Fig. 129………………………………………………………………………….208
Introduction 1
___________________________________________________________________________
1 Introduction

Germany is situated in the vegetation zone of deciduous and mixed forests. Under natural
conditions, most parts of the country would be covered with beech and oak forests. Only in
very dry areas and high up in the mountains, coniferous forests are found under natural condi-
tion.
thUntil the 18 century, large wooded areas had been destroyed by slash and burn to reclaim
land for agriculture and by felling trees for timber and fuel. The remaining forests were in-
tensely used as pastures and by collecting litter as food for livestock and as fertilizer. These
forms of utilisation lead to the exposure of the soil to erosion, to the reduction of the soil’s
capacity to store water and to the repression of the accumulation of humus which was accom-
panied by the removal of nutrients (SCHERZINGER, 1996).
thWith the industrial revolution in the 19 century extensive afforestation programs were
started. But in many cases, only coniferous trees such as spruces or pines could grow on the
degraded soils. Since these species grow quickly, they could meet the demand for timber and
fuel. After the World Wars the demand for wood further increased. The forest clearings in the
northeastern lowlands were mainly afforested with pines (Pinus sylvestris). Most of the pine
monocultures still originate from that time (SCHERZINGER, 1996, GELHAR, 2001).
This form of cultivation with monocultures of trees of one species of the same age was bor-
rowed from agriculture. In these forests a natural regeneration is impossible and a further deg-
thradation of the soil followed (SPERBER, 1997). In the late 19 century this form of cultivation
was recognised by Prof. Karl Gayer (GAYER, 1863, 1880) to be the cause of instability against
calamities of pests as well as severe storms. However, only in the early eighties of the last
century this knowledge was used to start the conversion of the forests towards more nature-
like stands.
In the northeastern lowlands the aim of the forest conversion is to convert the monotone pine
forests to mixed forest by increasing the percentage of beeches in the forests. The forest con-
version has to be economically justifiable, but also needs to consider ecological aspects.
The ecological effects of the forest conversion on the soil, the fauna and the flora have been
investigated in a nation-wide project supported by the Federal Ministry of Education and Re-
search (Bundesministerium für Bildung und Forschung - BMBF). In the project “Future-