Power cycling capability of advanced packaging and interconnection technologies at high temperature swings [Elektronische Ressource] :  / submitted by Raed Amro
127 Pages
English

Power cycling capability of advanced packaging and interconnection technologies at high temperature swings [Elektronische Ressource] : / submitted by Raed Amro

-

Downloading requires you to have access to the YouScribe library
Learn all about the services we offer

Description

Power cycling capability of advanced packaging and interconnection technologies at high temperature swings By the faculty of Electrical Engineering and Information Technology at Chemnitz university of Technology approved Dissertation In fulfilment of the requirements for the degree Doktor-Ingenieur (Dr.-Ing.) submitted by Dipl.-Ing. Raed Amro Born in 04.03.1969 in Dura-Hebron/ Palestine Date of submission: 24.04.2006 Examiners: Prof. Dr.- Ing. Josef Lutz Prof. Dr.- Ing. Andreas Lindemann Dr. Reinhold Bayerer Date of defence: 21.07.2006 Lastwechselfestigkeit von modernen Aufbau- und Verbindungstechniken bei hohen Temperaturhüben von der Fakultät für Elektrotechnik und Informationstechnik der Technischen Universität Chemnitz genehmigte Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) Vorgelegt von Dipl. Ing. Raed Amro geboren am 04.03.1969 in Dura-Hebron/Palästina eingereicht am: 24.04.2006 Gutachter: Prof. Dr.- Ing. Josef Lutz Prof. Dr.- Ing. Andreas Lindemann Dr. Reinhold Bayerer Tag der Verleihung: 21.07.2006 Acknowledgement This work accrued during my employment as a scientific co-worker at the chair of Power Electronics and Electromagnetic Compatibility (PE/EMC) at Chemnitz university of technology/Germany. My special thanks go to Prof. Dr.-Ing.

Subjects

Informations

Published by
Published 01 January 2006
Reads 45
Language English
Document size 20 MB



Power cycling capability
of advanced packaging and interconnection
technologies at high temperature swings


By the faculty of Electrical Engineering and Information Technology at Chemnitz
university of Technology


approved

Dissertation

In fulfilment of the requirements for the degree

Doktor-Ingenieur (Dr.-Ing.)

submitted by

Dipl.-Ing. Raed Amro

Born in 04.03.1969 in Dura-Hebron/ Palestine






Date of submission: 24.04.2006


Examiners: Prof. Dr.- Ing. Josef Lutz
Prof. Dr.- Ing. Andreas Lindemann
Dr. Reinhold Bayerer


Date of defence: 21.07.2006

Lastwechselfestigkeit von modernen Aufbau- und
Verbindungstechniken bei hohen Temperaturhüben



von der Fakultät für Elektrotechnik und Informationstechnik der Technischen
Universität Chemnitz


genehmigte

Dissertation

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)


Vorgelegt von


Dipl. Ing. Raed Amro

geboren am 04.03.1969 in Dura-Hebron/Palästina



eingereicht am: 24.04.2006


Gutachter: Prof. Dr.- Ing. Josef Lutz
Prof. Dr.- Ing. Andreas Lindemann
Dr. Reinhold Bayerer


Tag der Verleihung: 21.07.2006
Acknowledgement

This work accrued during my employment as a scientific co-worker at the chair of Power
Electronics and Electromagnetic Compatibility (PE/EMC) at Chemnitz university of
technology/Germany.

My special thanks go to Prof. Dr.-Ing. Josef Lutz for his support and professional suggestions
which made this work possible. Further thanks are due to Prof. Dr.-Ing. Andreas Lindemann
and Dr. Reinhold Bayerer for the valuable discussions and their role as joint examiners.

I also thank:

All my colleagues at the chair PE/EMC for their support and the good working atmosphere.

The students who supported me with their works.

Mrs. Iris Höbelt from center of microtechnologies at Chemnitz university of technology for
the scanning electron microscopy.

Prof. Dr. Roland Sittig, Dr.-Ing. Jacek Rudzki from Technical University at Braunschweig
and Dr.-Ing. Markus Thoben from Infineon Technologies AG/Warstein for their precious
cooperation in the reliability investigation of the Low Temperature Joining Technique.

Dr. Uwe Scheuermann from Semikron International and Dr. Max H. Poech from Fraunhofer
Institute for Silicon Technology ISIT for the valuable discussions and tips.

My wife Maysa and son Aziz for support and patience.

And last but not least, my parents for being there.



Chemnitz, July 2006






Dedicated to my father who passed away three weeks before my defence i


Contents



1 Einleitung .......................................................................................................................... 1

2 Kurzfassung ...................................................................................................................... 3

3 Motivation........... 5

4 Thermal analysis in power electronics ........................................................................... 7

4.1 Theory of heat transfer ................................................................................................7

4.2 Mechanisms of heat transfer ....................................................................................... 8

4.3 Analogy between thermal and electrical systems ....................................................... 9

4.4 Thermal networks...................................................................................................... 10

4.4.1 Types of thermal networks................................................................................. 10

4.4.2 Transformation of ‘Foster’ network into ‘Cauer’ network ................................ 12

4.4.3 Simulation of thermal behaviour of power devices using Cauer network ......... 12

5 Packaging and interconnection technologies in power electronics............................ 16

5.1 Packaging concepts of power components.................................................................. 16

5.1.1 Discrete power devices....................................................................................... 17

5.1.1.1 TO-family.................................................................................................... 17

5.1.1.2 DCB based, transfer molded devices .......................................................... 18

5.1.1.3 Hockey puck packages................................................................................ 19

5.1.2 Power modules ................................................................................................... 19

5. 2 Advancements in standard power modules............................................................. 20

5.2.1 ECONOPACK family......................................................................................... 20

5.2.2 Pressure contacted modules ............................................................................... 22

5.2.3 Intelligent power modules (IPM) ....................................................................... 23 ii

5.3 Interconnection technologies in power electronics ................................................... 23

5.3.1 Wire bonding technology................................................................................... 23

5.3.2 Soft solders......................................................................................................... 25

5.4 Advancements in the interconnection technologies................................................. 25

5.4.1 Advancements in wire bonding techniques........................................................ 25

5.4.2 Advancements in soldering and joining techniques........................................... 27

5.5 Low temperature joining technique (LTJT).............................................................. 28

5.5.1 Principle and performances of the LTJT............................................................ 28

5.5.2 Joining procedure of the LTJT........................................................................... 29

5.5.2.1 Powder application...................................................................................... 29

5.5.2.2 Joining process ............................................................................................ 30

6 Failure mechanisms in power devices ......................................................................... 33

6.1 Failure mechanisms of bond wires............................................................................ 33

6.2 Reconstruction of the Al metallization...................................................................... 38

6.3 Electromigration........................................................................................................ 39

6.4 Solder-joints degradation .......................................................................................... 41

6.5 Electrical and mechanical aging of DCB .................................................................. 43

6.6 Die fracture................................................................................................................ 45

7 Reliability prediction in power electronics 46

7.1 Lifetime prediction using accelerated aging tests ..................................................... 46

7.1.1 Temperature cycling tests................................................................................... 46

7.1.2 Power cycling tests............................................................................................. 47

7.1.2.1 Impact of test parameters on N .................................................................. 48 f

7.1.2.2 Extrapolation of life-time models based on results of power cycling tests. 50

7.1.2.3 Statistical analysis of the reliability test results ......................................... 51
iii
7.2 Failure analysis techniques........................................................................................ 53

7.3 Power cycling reliability of standard power modules (LESIT project) .................... 55

8 Thermal measurements in power electronics .............................................................. 59

8.1 Methods of measuring T ........................................................................................... 59 j

8.2 R measuring set-up.................................................................................................. 63 th

8.2.1 Test set-up and measuring principle................................................................... 63

9 Power cycling reliability of modern packaging technologies ..................................... 70

9.1 Test set-up ................................................................................................................. 70

9.2 Measuring methods ................................................................................................... 71

9.3 Power cycling of standard discrete power devices.................................................... 75

9.4 Power cycling reliability of pressure contacted power modules............................... 77

9.5 Power cycling reliability of state-of-the-art of power modules with base plate ....... 81

9.6 Power cycling reliability of DCB based, transfer molded power devices ................ 86

9.7 Conclusion/Summary................................................................................................. 94

10 Power cycling reliability of Low Temperature Joining Technique (LTJT) ........... 96

10.1 Power cycling reliability of one-sided LTJT at high temperature swings ................ 96

10.1.1 Power cycling test at ∆T =130K....................................................................... 97 j

10.1.2 Power cycling test at ∆T =156K 99 j

10.2 Power cycling reliability of double-sided LTJT devices at ∆T =130K ................ 102 j

10.3 Conclusion/Summary............................................................................................ 105

11 Summary and outlook................................................................................................ 107

12 Theses .......................................................................................................................... 109

Bibliography ......................................................................................................................... 111 iv

Inhaltsverzeichnis


1 Einleitung ........................................................................................................................... 1

2 Kurzfassung ....................................................................................................................... 3

3 Motivation........... 5

4 Thermische Analyse in der Leistungselektronik ........................................................... 7

4.1 Theorie der Wärmeübertragung ................................................................................... 7

4.2 Mechanismen der Wärmeübertragung ......................................................................... 8

4.3 Analogie zwischen thermischen und elektrischen Systemen....................................... 9

4.4 Thermische Netzwerke............................................................................................... 10

4.4.1 Netzwerkarten ..................................................................................................... 10

4.4.2 Transformation von ‘Foster’ Netzwerk in ‘Cauer’ Netzwerk............................. 12

4.4.3 Simulation des thermischen Verhaltens von Leistungsbauelementen mit Cauer
Netzwerken ...................................................................................................................... 12

5 Aufbau- und Verbindungstechnik in der Leistungselektronik................................... 16

5.1 Aufbaukonzepte der Leistungsbauelemente .............................................................. 16

5.1.1 Diskrete Leistungsbauelemente........................................................................... 17

5.1.1.1 TO-Familie................................................................................................... 17

5.1.1.2 DCB basierte, umpresste Bauelemente ...................................................... 18

5.1.1.3 Scheibenzellen.............................................................................................. 19

5.1.2 Leistungsmodule ................................................................................................. 19

5. 2 Weiterentwicklungen im Bereich der Leistungsmodule .......................................... 20

5.2.1 ECONOPACK Familie........................................................................................ 20

5.2.2 Druckkontakt-Module ......................................................................................... 22

5.2.3 Intelligente Leistungsmodule (IPM) .................................................................. 23
v
5.3 Verbindungstechniken in der Lesitungselektronik..................................................... 23

5.3.1 Bonddrahttechnologie ......................................................................................... 23

5.3.2 Weichlote ............................................................................................................ 25

5.4 Weiterentwicklungen der Verbindungstechniken der Leistungselektronik ............... 25

5.4.1 Entwicklungen in der Bonddrahttechnologie...................................................... 25

5.4.2 Entwicklungen in der Löttechnologie ................................................................. 27

5.5 Niedertemperaturverbindungstechnik (NTV) ........................................................... 28

5.5.1 Prinzip und Eigenschaften der NTV ................................................................... 28

5.5.2 Verbindungsablauf der NTV............................................................................... 29

5.5.2.1 Pulverauftrag ................................................................................................ 29

5.5.2.2 Verbindungsprozess ..................................................................................... 30

6 Ausfallmechanismen ...................................................................................................... 33

6.1 Ausfallmechanismen der Bonddrähte ........................................................................ 33

6.2 Rekonstruktion der Aluminiummetallisierung .......................................................... 38

6.3 Elektromigration......................................................................................................... 39

6.4 Lotschichtermüdung .................................................................................................. 41

6.5 Elektrische und mechanische Alterung des DCB ..................................................... 43

6.6 Chipbruch................................................................................................................... 45

7 Zuverlässigkeitsprüfung in der Leistungselektronik .................................................. 46

7.1 Zuverlässigkeitsprüfung mittels beschleunigter thermischer Alterungstests ........... 46

7.1.1 Temperaturwechseltests ...................................................................................... 46

7.1.2 Lastwechseltests.................................................................................................. 47

7.1.2.1 Einfluss der Testparameter auf N ................................................................ 48 f

7.1.2.2 Extrapolation der Lebensdauer auf Basis von beschleunigten
Lastwechseltests ..........................................................................................................50

7.1.2.3 Statistische Analyse der Zuverlässigkeitstestergebnisse.............................. 51
vi
7.2 Techniken der Ausfallanalyse .................................................................................... 53

7.3 Lastwechselfestigkeit von Standardleistungsmodulen (LESIT Projekt)..................... 55

8 Thermische Messungen in der Leistungselektronik ........................................................ 59

8.1 Messmethoden von T ................................................................................................. 59 j

8.2 Rth- Messplatz............................................................................................................. 63

8.2.1 Messstand und Messstrategie................................................................................ 63

9 Lastwechselfestigkeit moderner Aufbautechnologien ..................................................... 70

9.1 Lastwechselstand......................................................................................................... 70

9.2 Messmethoden............................................................................................................. 71

9.3 Lastwechselfestigkeit von Standardisierten diskreeten Bauelementen ..................... 75

9.4 Lastwechselfestigkeit von Druckkontaktmodulen ...................................................... 77

9.5 Lastwechselfestigkeit von modernen Leistungsmodulen mit Grundplatte .................... 81

9.6 Lastwechselfestigkeit von DCB basierten, umpressten Bauelementen ......................... 86

9.7 Ergebnisse/Zusammenfassung ....................................................................................... 94

10 Lastwechselfestigkeit der Niedertemperaturverbindungstechnik (NTV)................... 96

10.1 Lastwechselfestigkeit einseitiger NTV Bauelemente bei hohen Temperaturhüben ... 96

10.1.1 Lastwechsel bei ∆T =130K ................................................................................... 97 j

10.1.2 Lastwechsel bei ∆T =156K 99 j

10.2 Lastwechselfestigkeit von beidseitiger NTV Bauelemente bei ∆T =130K................ 102 j

10.3 Ergebniss/Zusammenfassung..................................................................................... 105

11 Zusammenfassung und Ausblick ................................................................................... 107

12 Thesen............................................................................................................................... 109

Literaturverzeichnis............................................................................................................. 111