Read anywhere, anytime
Description
Subjects
Informations
Published by | universitat_stuttgart |
Published | 01 January 2004 |
Reads | 25 |
Language | English |
Document size | 2 MB |
Exrait
EllipsoidsOblateofSedimentation
VonderFakult¨atMathematikundPhysikderUniversit¨atStuttgart
zurErlangungderW¨urdeeinesDoktorsder
Naturwissenschaften(Dr.rer.nat.)genehmigteAbhandlung
vorgelegtvon
FrankRodolfoFonsecaFonseca
Hauptberichter:Mitberichter:
ausColombiaa´Bogot
Prof.Prof.DrDr.H..-Ing.J.RainerHerrmannHelmig
Tagderm¨undlichenPr¨ufung:14.Mai2004
Institutf¨urComputeranwendungen1derUniversit¨atStuttgart
2004
oT
a
aLaur
little
on
Sofia,
part
earth
...
of
heaven
Contents
1
2
3
4
ZusammenfassungDeutsche1.1Simulationsmethode............................
1.2DiePhasen.................................
¨1.3Derstation¨areZustandundperiodischePhasen:Ahnlichkeitgesetz.....
¨1.4ZustandsdiagrammundUberg¨ange.....................
1.5Sedimentationsgeschwindigkeitf¨uroblateEllipsoide...........
1.6Orientierungsverhalten...........................
1.7Diffusion..................................
1.8R¨aumlicheKorrelationen..........................
¨1.9AnderungenimVolumenanteilundKollaps................
¨1.10AnderungderBeh¨altergr¨oße........................
oductionIntr2.1Thefallingobjects.............................
2.2Manyparticlesedimentation........................
2.3Drivensuspensionandhydrodynamicdispersion.............
2.4Steadysedimentationandthefluidizedbedgeometry...........
2.5LowReynoldsnumberflow.........................
2.6Velocityfluctuationsinhard-spheresedimentation.............
2.6.1CaflischandLuke’swork......................
2.6.2Resumeofexperimentsandsimulations..............
2.6.3Sometheoreticalapproaches....................
2.7Non-Sphericalparticles...........................
2.8Overview..................................
Model3.1Navier-Stokesequations..........................
3.1.1Thegeneralequationforthedynamicsofthefluid........
3.1.2ThedimensionlessformoftheNavier-Stokesequation......
3.2Boundaryconditions............................
3.3Themodel..................................
3.4Contactfunction...............................
Phenomenology4.1Trajectoriesofafallingoblateellipsoid..................
4.2Steady-fallingoblateellipsoid.......................
4.3Oscillatoryoblateellipsoid.........................
i
113345678910
131315161719202021212223
27272829303033
35353739
ii
5
6
7
8
9
Contents
4.4Chaoticoblateellipsoid...........................
4.5ComparisonwithMahadevan´smodel...................
4.6Vortex....................................
4.7ConclusionsandOutlook..........................
Phases5.1Steady-FallingPhase.............................
5.1.1Changeintheinitialfallingheight..................
5.1.2Dependenceonthekinematicviscosity...............
5.1.3Changeintheellipsoidaspect-ratio.................
5.2PeriodicPhase................................
5.2.1Changeintheinitialorientation..................
5.2.2ComparisonwithBelmonte’sresults................
5.3Chaoticregime................................
5.3.1Sensitivitytothechangeintheinitialorientation.........
5.3.2Powerspectra,autocorrelation,Poincaresection..........
5.3.3Lyapunovnumber..........................
5.4ConclusionsandOutlook..........................
transitionsphaseandlawSimilarity6.1Steady-FallingOblateEllipsoid:Similaritylaw...............
6.2Periodicbehavior:Similaritylaw......................
6.3PhaseDiagram................................
6.4TransitionfromSteady-fallingtoOscillatoryphase............
6.5TransitionfromSteady-fallingtochaoticphase...............
6.6ConclusionsandOutlook..........................
articlesPMany7.1Results....................................
7.1.1Sedimentationvelocityforoblateellipsoids............
7.1.2Orientationalbehavior.......................
7.1.3Orientationalchanges........................
7.1.4ModerateReynoldsnumber....................
7.2OutlookandConclusions..........................
Diffusion8.1Introduction.................................
8.2Results....................................
8.2.1Changeindensity,viscosityandaspect-ratio...........
8.2.2Orientationaldiffusion.......................
8.2.3Non-diffusivedynamicalbehavior.................
8.2.4Similarity..............................
8.3OutlookandConclusions..........................
FluctuationselocityV9.1Spatialcorrelations.............................
9.1.1Changeinthevolumefraction...................
404041424343434447484850525253535457575959616263656565697273747777808184859192939394
Contents
9.1.2Collapsingofthespatialcorrelations.
9.2Changeofthecontainersize.........
9.3OutlookandConclusions...........
Conclusion1010.1OneOblateellipsoid.....
sedimentationellipsoidsyMan10.210.3Outlook............
yBibliograph
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
iii
9598101
103103104106
109
vi
Contents
1Kapitel
ZusammenfassungDeutsche
Newtonzeigte,dassK¨orpermiteinerkonstantenBeschleunigungaufdieErdefallen,aber
trotzderunleugbarenAnziehungderSchwerkraftbewegensichnichtallefallendenGe-
genst¨andeaufgeraderFlugbahnabw¨arts.DieBetrachtungderFl¨ussigkeitbeinhaltetsehr
schwierigeundnichtlineareInteraktionen.TrotzderbahnbrechendenBem¨uhungendurch
Maxwellallgemeine(1853),ProblemderalsohneerstesL¨osung.dieK¨orper-AndererseitsFl¨ussigkistdieeit-InteraktionSedimentbildungbetrachteteineshat,bliebSystemsdas
vonProblemPartikinelnderineinerHydrodynamikFl¨ussigkeitundinunterderdemStatistischenEinflussderPhysik.SchwerkraftDieseseinProblemsehrhatwichtigesviele
ten,derAnwendungenBiophinysik,dendergrundleKlimaforschunggendenWsowieissenschaftenaufdemwieinGebietdenderLuftftechnischenahrtwissenschaf-chemi-
schenReaktoren,z.B.derAusbreitungvonVerschmutzung,inTintenstrahldruckern,den
druckaufgeladenenWirbelschichtsystemen,etc..DiesesProblemweistschwierigeMul-
tik¨orper-InteraktionenwegenderweitreichendenHydrodynamikauf,dief¨urKugeln¨uber
weinenamyBereich(2001).vTonrozΨ/edieseabf¨allt,breitenwobeieAnwendungmderAbstand¨oglichkzwischeneitenfehltdenPderartikPartikelnist,elsediment-Ramas-
bleibtbildungeinungelweiterhin¨osteseineProblem.statistisch-mechanischeundhydrodynamischeBeschreibungund
Simulationsmethode1.1
DasModellwurdedurchH¨oflerandSchwarzer(2000)entwickelt,erweitertdurchKuu-
selaHerrmannet.al.((1)(2001)2004)undwirdangewinandt.einigenDieBeStudienwevgungonKvonuuselaFl¨et.ussigkal.eiten(2003)wirdundgelF¨ost,onsecaindemand
mandieinkompressiblenNavier-StokesGleichungenaufeinemdiskretenGitterl¨ost:
∂∂iv+Σv∙)v=−p+,E()v+Ω(1.1)
Φ=v∙wterneobeivKraftdiedarstellt,GeschwindigkdieineitderunseremFl¨ussigkProblemeitist,diesowieSchwerkraftpdenist.DruckDieundReΩeineynoldszahlex-
1
2
240(a1)180Position in Y12060
0
(b1)
(I)
(c1)
Simulationsmethode1.1.1
−258118178238298
Position in X
Abbildung1.1:TypischeFalltrajektorieninunserenSimulationen.Wirzeigendasun-
ver¨zillationanderlich-fmitν=allendeΦ.ΦΩ)Re,Δegime,=ΦΣ.NΨ)Ψ´´,.mitΣPΨ)Δ,eund=Φ.dieΩ),ν=chaotischeΦ.Φ´´;BeΣOweΨ)gungdiemitΔperiodischee=Φ.Os-Ω),
ν=Φ.Φ´´.
ES=iΩEMρM/Σν),wobeiidievertikaleoblateEllipsoidgeschwindigkeitist,ΩEMder
gr¨oßteDurchmesserdesoblatenEllipsoids,ρMdieDichteundν=µ/ρMdiekinemati-
istschedabeiViskdieosit¨at(µSchwerkraft.istdieDieScherviskosit¨Grenzbedingungenat).DieFroudezwischenZahlistder>Fle¨=ussigkΣi))eit/ΣUundΣΩEdenM)),ob-g
Fllaten¨ussigkeitaufEllipsoidpartikderPelnartiksindeloberflerf¨¨ullt,achewennabh¨angigmanvinonderBetrachtrutschfreienzieht,dassdieBeGrenzbedingungwegungist,der
vΣx)=vj+rΣx)CM×ω,wobeividietranslationaleGeschwindigkeitdesEllipsoidsist,
rWΣxinkCM)derVelgeschwindigkektorveitondesseinerEllipsoids.MittezumPunktxanderEllipsoidoberfl¨ache,undωdie
DieInteraktionzwischenderellipsoidalenOberfl¨acheundderFl¨ussigkeit,dieandasEl-
lipsoidangrenzt,wirderhalten,indemmaneinewiederherstellendeKrafteinf¨ugt,die
eineDiese“VVerteilungskrafterteilungskraft”inahmtdiedieVGegenwolumenkraftartdesderNaEllipsoidsvier-StokinesdemSinneGleichungnach,vdasserursacht.die
Fl¨ussigkeitinnerhalbdesEllipsoidssichwieeinsteiferK¨orperbewegt.Einenichtreiben-
deKraftwirdausge¨ubt,wenndiePartikelschabloneunddersteifeK¨orpernichtinder
gleichenPositionsind(H¨ofler(2000)).
DierepulsiveKraftzwischendenEllipsoidenwirdproportionalzuihrer¨Uberlappung
gekurzew¨ahlt.AbstW¨ennandedievermeidenoblatendieEllipsoidehnichtydrodynamischen¨uberlappendKr¨afte,sind,dieistdiedasVKraftnull,orhandenseinund¨uberder
Fldiese¨ussigkKrafteitwirdbeschreiben,eineKdenKontaktfunktionontaktgewzwischen¨ahlt,dendiePartikeingehendereln(KinuuselaKet.uuselaal.et.al.(2001)).(2001)F¨ur
undinPerramandRasmussen(1996)erkl¨artwird.DieGeometriedesoblatesEllipso-
idsminimalenwirddurchRadiusseinEbSeitenzumverh¨maximalenaltnisΔegekRadiusEMennzeichnet,,somitΔedefiniert=Ebals/EdasM.Verh¨altnisdes
ZusammenfassungDeutsche
System L"System L
66System LSystem L"System LSystem L5544Vertical velocity vyVertical velocity vy33221100101418225791113
Time t(ts)Time t(ts)
3
Abbildung1.2:AusgangsbedingungenimSystem:θd=Ω+.+Φ,Vd=ΩΩΦ,Δe=Φ.Ψ)und
kinematischeViskosit¨atν=Φ.Φ1´.InderAbbildungstellenwirdievertikaleGeschwin-
digkeitgegendieZeitinbeidenSystemen(durchgezogeneLinie),A,(c=Ω,gestrichelte
LiniemitQuadraten)dar.DieSuperpositionwirddurchAnwendungderUmkehrtranfor-
mationdurchgef¨uhrt,dieinTabelleΨ.Ψbeschriebenwird.
SystemA→SystemASystemA→SystemA
ASdg→c∗ASdgG∗→c∗G∗
EM→c∗EMiSdg→vchor
Eb→c∗EbivEgi→vvcert
U→1∗Rc
Tabelle1.1:TransformationsregelnderSedimentation.cisteinereelleZahl.
PhasenDie1.2
WirfandendreiunterschiedlicheArtenvonBewegung,genanntPhasen,inunserenSimu-
lationen:Derstation¨areZustand,dieseitlicheoderperiodischeBewegung(Belmonteet.
al.(1998))undeinechaotischeBewegung,dieinAbb.1.1gezeigtwerden.
1.3Derstation¨areZustandundperiodischePhasen:
¨eitgesetz.Ahnlichk
DieGrenzgeschwindigkeitiwirdbestimmtdurchdas√Gleichgewichtzwischenden
Tr¨agheits-undViskosit¨atskr¨aften>T=>C,daheristi∼UEb.Wirnehmenan,dassdie
charakteristischePeriodederBewegungvonderseitlichenAbmessungASdgdesBeh¨alters
abh¨angtundvondervertikalenAbmessungunabh¨angigist.Folglichnehmenwiran,dass
diePeriodesichwieG∗∼ASdg/i¨andernsollte.DieTransformationinTabelleΨ.Ψl¨aßtdie
FroudeundReynoldszahlkonstantunddieDynamikindenzweiSystemenist¨aquivalent,
4
1.1.4Zustandsdiagrammund¨Uberg¨ange.
110-1Ref. [14]Ref. [13]This workTumbling10
PSfragreplacementsefghPSfragChaoticreplacementsChaotic
10-2bcd∗I
I∗∗ISteadyPeriodicaIE∗I*100
FallingΨΨ2ΦΦ10-3ΨΨ2ΦΦSteady−Falling Periodic
Ψ3ΦΨ3Φ
ΨΨΨΦ102E103104ΨΦ101Re102103
Abbildung1.3:DielinkeAbbildungzeigtdasZustandsdiagrammderfallendenScheiben
wiesenrauminf¨urBelmontedasfet.allendeal.Ψ221oblateberichtet.EllipsoidIndardes,dasrechtenwirinAbbildungunserenstellenSimulationenwirdererhaltenPha-
haben.
wennsichdiedynamischenVariablenwieinTabelleΨ.Ψ(Abbildung1.2)¨andern.Auch
dieDynamikf¨urdenstation¨arenZustandunddieperiodischenPhasenwerdenaufdieser
Skalaunabh¨angigvoneinander.
1.4Zustandsdiagrammund¨Uberg¨ange.
ImPhasenraumdefinierenwireindimensionslosesTr¨agheitsmomentI=15ρρfellipluidΔe,das
dasVerh¨altnisdesTr¨agheitsmomentsdesoblatenEllipsoidszuderseineskugelf¨ormigen
¨AquivalentsbeidergleichenReynoldszahlES=>)νgM)ist.Esistwichtigzuerw¨ahnen,
dassdasExperimentf¨ureinefallendeScheibemitkleinenSeitenverh¨altnissendurch-
gef¨uhrtwurde,undwirerwarten,dassdieDynamikdesSystems¨ahnlichdereinesoblaten
wird.seinEllipsoidsWennwirunserDiagramminAbb.1.3rechtsmitdenexperimentellenResultatenlinksin
Abb.1.3(Fieldet.al.(1997))vergleichen,sehenwir,dassinbeidenAbbildungendieVer-
teilungderPhasen¨ahnlichist.DieUnterschiedebez¨uglichunseresDiagrammsmitdenen
vonFieldet.al.(1997)sind,dasssieScheibenbenutzenundnichtoblateEllipsoideund
dasTaumel-RegimenichtinunserenResultatenvorkommt.DieKoexistenzderdynami-
schenPhasenistvonderanf¨anglichenOrientierungdesoblatenEllipsoidsunabh¨angig.
LinksinAbbildung1.4zeigenwirdasVerhaltendercharakteristischenZeitG∗/G.Mit
Erh¨ohungdieReynoldszahlESgehtdiecharakteristischeZeitnachNullbeiESB≈´))
(Abb.1.3).NachdiesemPunktfindenwirdieperiodischePhase,diesichwiediePhase
desunver¨∗andlichenFallensmiteinerunendlichencharakteristischenZeitverh¨alt.Folglich
k¨onnenwirG/GalsOrdnungparameterbetrachten,undderKontrollparameterf¨urdie-
sen¨UbergangistdieReynoldszahl.Dieser¨UbergangistwieeinPhasen¨ubergangzweiter
Ordnung.DieinnereAbbildungstelltdasPotenzgesetzmiteinemkritischenExponenten
ZusammenfassungDeutsche
0.039
60
45
*/Ty=0.53*x−6.1*30T/TT0.0340.024/T)*ln(T150.009268.5818.58)ln(Re−Rec0.00911021031000.180.20.220.24
ReRecΔ r Δ rc
5
Abbildung1.4:DielinkeAbbildungstelltdenG∗/GgegendenOrdnungparameterES,
mitEExponentenSB≈´))nahedarbei.ΦDie.).DieinnererechteAbbildungAbbildungzeigtzeigtdasdenG/GPotenzgesetz-V∗gegendenerhaltenmitOrdnungspa-einem
rameterΔe,mitΔeB≈Φ.ΩΩ.
≈Φ.)dar.ImFalldesoberenTeilsdes¨Ubergangs,Abb.1.3,deutetdieVer¨anderungdes
oblatenEllipsoid-Seitenverh¨altnissesdie¨Anderungvoneinenstation¨arenZustandFallen
zueinemperiodischesRegimean.
Derrechts¨Uberdarganggestellt.vomWirstationv¨arenerwendenZustandG/G∗F,allend.h.diezumInversechaotischendeszuvReorgimevwirderwendeteninAbb.Ord-1.4
nungsparameters,umden¨UbergangzubeschreibenundalsKontrollparameterdasSei-
tet.tenvDieerh¨altnisΔecharakteristische.BeiΔeBZeitwirdGein/G∗vendlichererschwindetSprungwegendesdernicht-reOrdnungsparametersgelm¨assigenbebeobach-we-
sind.gungen,Dieserdie¨geUbergengangkleinescheintSchwdaherankungeneinderPhasenanf¨¨uberganglichenangersterOrientierungOrdnungzusehrsein.empfindlich
1.5Sedimentationsgeschwindigkeitf¨uroblateEllipsoide
InderlinkenAbbildung1.5zeigenwirdiemittlerevertikaleSedimentationsgeschwindig-
keitiΣg)alsFunktiondesVolumenanteilsΦVf¨urEllipsoideundKugelnundvergleichen
dannmitdemph¨anomenologischenRichardson-ZakiGesetzvΦ)=ΣΨ−ΦV)c(Richard-
sonandZaki(1954))mitc=).).DerGrenzwertΦV→Φv0entsprichtdemeinzelnen
fallendenEllipsoid,daswirinFonsecaandHerrmann((1)2004)studierten.Esistinter-
essantzuunterstreichen,dassdieSedimentationsgeschwindigkeitdesEllipsoids,diedem
ph¨anomenologischenRichardson-ZakiGesetzfolgt,verglichenmitderder¨aquivalenten
Kugel,kleinist.F¨urEllipsoidegehtdievertikaleMittelgeschwindigkeitdurcheinlokales
MaximumbeiΦV≈Φ.Φ).DiesesMaximumistziemlichinteressant,daesnichtf¨urKu-
gelnbeobachtetwird.¨Ahnlichenicht-monotoneSedimentation¨ubernicht-kugelf¨ormige
K¨orper(z.B.Fasern)istexperimentelldurchHerzhaftandGuazzelli(1999)undf¨urpro-
6
0.9 (vs)||0.6<v>0.3
Richardson−ZakiSim. Oblates3Sim. Spheres
2.4)s(v||<v>
1.8
erhaltenOrientierungsv1.1.6
SphEllip
00.050.1ΦV0.150.200.040.08ΦV0.120.16
dasAbbildungoblate1.5:EllipsoidLinkerPlot(gestricheltezeigtdieLiniemitmittlereQuadraten)unddieSedimentationsgeschwindigkKugel(gestrichelteeitiΣg)Linief¨ur
mitPunkten),alsFunktiondesVolumenanteilΦVbeiES=(∗ΨΦ−).DierechteAbbil-
dungzeigtdiemittlereSedimentationsgeschwindigkeitbeiES≈0.DasoblateEllipsoid-
Seitenverh¨altnisistΔe=Φ.Ω),die¨aquivalentKugelhatEEfjT=Φ.20.
lateEllipsoideinSimulationenvonKuuselaet.al.(2001)berichtetworden.
die¨Abbildungaquivalenten1.5Krechtsugelnstellt(◦)diealsmittlereFunktionvdesertikaleVolumenanteilGeschwindigkbeieitf¨urniedrigerEllipsoideRe(ynoldszahl)und
dar(ES≈7).IneinervorhergehendenArbeitistdieseSimulationsmethodemitErfolg
biszuES≈ΨΦ(H¨oflerandSchwarzer(2000)undKuuselaet.al.(2003))verwendet
worden.DasZwischenmaximumf¨urdieEllipsoidewirdnichtinAbb.1.5rechtsbeob-
achtet,wieinAbb.1.5,linksbeiderniedrigenReynoldszahlgezeigt.EinVergleichmit
demph¨anomenologischenRichardson-ZakiGesetz(durchgezogeneLinieimAbb.1.5
rechts)zeigteinenExponentenvonc<eS=´.Ωf¨urKugelnundcEaaTe=(.Φf¨urEllip-
soide.InbeidenF¨allenfolgendieDatendemRichardson-ZakiGesetzrechtgut.Diese
Exponenten(c=´.Ωundc=(.Φ)liegenzwischendemGrenzwertniedriger
Partikel-T<eSeilchen-Zahlen(c≈(E.)a)aTeundeinemturbulentenPartikelsystem(c≈>Ω.)),
(1954).ZakiandRichardson
erhaltenOrientierungsv1.6
DiemittlerevertikaleOrientierung(MVO)θwirdalsFunktiondesVolumenanteilsin
Abb.1.6linksgezeigt.F¨urkleinereVolumenanteilezeigtdasMVOeinest¨arkereAus-
mitrichtungdermitSchwerkraftderSchwerkraft,beobachtet,undimwelchesGrenzfdemallΦV→OrientierungsvΦwirdeineerhaltenfgenauere¨ureinoblatesAusrichtungEl-
lipsoidentspricht,dasinFonsecaandHerrmann((1)2004)beobachtetwurde.Wirsehen
auchf¨urdasMVOeinZwischenmaximumbeiΦV≈Φ.Φ),welchesdaslokaleMaxi-
mumdervertikalenGeschwindigkeitbeigleichemVolumenanteilerkl¨arenk¨onnte,dasin
ZusammenfassungDeutsche
7
900.50.280)−1>−0.1θ70Θ=<2cos(−0.460Ψ−0.7500.4/2.4−10.4/1.60.4/0.800.05ΦV0.10.1500.05Φ0.1V0.150.2
Abbildung1.6:DieVerteilungsfunktionPΣPdfΣθ))f¨urdiemittlerevertikaleOrientierung
θdief¨urReynoldszahlunterschiedlicheES=V(∗ΨΦ−olumenanteile.).DasOrdnungparameterEllipsoid-SeitenΨalsverhFunktion¨altnisdesistVΔe=Φolumenanteils,.Ω)und
ΦVf¨ur,dreiunterschiedlicheSeitenverh¨altnisseΔe=Φ.(/Ω.(;Φ.(/Ψ.+;Φ.(/Φ.1.
Abb.1.5dargestelltist.DiesesZwischenmaximumexistiertnichtf¨urKugeln.F¨urgr¨oßere
WertedesVolumenanteils(ΦV>Φ.Φ1)zeigtdieAbbildungeinemonotoneAbnahme.
GrUm¨oßedieΨ=σOrientierungΩPdfΣθ)der−Ψ>oblatenein,dieEllipsoideauchinKquantitatiuuselavet.zual.bestimmen(2003)alsf¨uhrenOrdnungspa-wirdie
rameterderOrientierungmitdenWerten−Ψ,Φoder+Ψverwendetwurde,wennalle
oblatenEllipsoidezurSchwerkraftsenkrecht,zuf¨alligorientiertoderentlangderSchwer-
kraftausgerichtetsind.Abbildung1.6rechtszeigtdasVerhaltenvonΨgegenΦV,f¨ur
kleinereVolumenanteilenimmtderOrdnungsparameterΦV≈Φ.ΦΦΨ¨−Φ.Φ1negative
Wertean,wasdieAusrichtungentlangderSchwerkraftbeweistundinUbereinstimmung
mitdemGrenzwert,ΦV→Φ(einoblatesEllipsoid)FonsecaandHerrmann((1)2004),
dieist.Ungeforientierung¨ahrbeiΦdeutetV≈beiΦ.Φ1positiistvderemOrdnungsparameterOrdnungparameterNull.senkrechtF¨urgr¨zuroßeresΦSchwerkraft.V≥Φ.Φ1Im,
woBereichwirveinonΦlokalesV≈Φ.MaximumΦΦΨ−Φin.Φ1,Abbhat.1.6ΨeinrechtslokalesundinAbbMinimum.1.5nahelinksfbeiΦanden.V≈DieΦ.Φ)Si-,
Δg=mulationenΦ.(/Φ.1;Φwurden.(/Ω.(mit,undzweiwiranderenbeobachteten¨unterschiedlichenahnlichesVL¨angenerhalten.verh¨altnissenwiederholt,
Diffusion1.7
Abbildung1.7(a)zeigtdieAbleitungdermittlerenquadratischenTeilchenverschiebung
RE/Rgf¨ursedimentierendeEllipsoide,wobeiEΣg)=σ[kΣg)−ΣkΣΦ)+σi>g)4)>
ist.DieKlammernbedeuten,dasseinMittelwert¨uberdasEnsemblejenerPartikel,die
sichimunterenBereichdesBeh¨altersbefinden,gebildetwird.σi>istdiemittelere
GeschwindigkeitallerPartikelmiti=Φ.DieGraphikenstellendiegr¨oßenAnisotropie
denparallelen()undsenkrechten(⊥)Anteiledar.ImAllgemeinenstellenbeideAnteile
8
replacementsPSfrag
210⊥ll110log(dR/dt)010
110))log(t(ts
1.1.8R¨aumlicheKorrelationen
210
Abbildung1.7:Abbildungzeigtdieparallelen()undsenkrechten(⊥)AnteilederM.S.D.
f¨ursedimentierendeEllipsoideineinerlog-logSkala.DiedickengepunktetenLinienda-
zwischenstellendasWachstumindenballistischenundnicht-diffusivenRegimendar.
DerKugelradiusistEEfjT=Ψ.ΦΨ.DieReynoldszahlistΩ×ΨΦ−)und0dasSeitenverh¨altnis
Δe=Φ.(/Ψ.+.DieZahlderEllipsoideistvonderGr¨oßenordnungΨΦ.
ZeitAdimensionalZeit→igi→sσk)>→1θk,22eqρ
viv→sTabelle1.2:Transformationsregelnf¨urdieSedimentation
einanf¨anglichessogenanntesballistischesRegimedar,wieinAbbildung1.7(a),durch
eineparalleledickegepunkteteLiniezwischendenKurvenbildlichdargestelltist.Dieses
ballistischeRegimeistzug)proportional.Wirfindeneinnicht-diffusivesVerhaltendefi-
αniertEllipsoiddichte,durchEΣg)der≡Vgiskundosit¨atundExponentendemSeitenzwischenverh¨Ψ.altnis(≤abhα¨≤angen.Ω.),derenWertevonder
InTabelle1.2stellenwirdieTranformationsregelndar,dieverwendetwerden,umdie
TGraphikranformationsreeningelnAbbildungunver1.8¨andert¨ubereinandergelassen.zuDieseslegen.ErDiegebnisRegiltf¨urynoldszahlkleinewirdESdurchΨΦ−).die
1.8R¨aumlicheKorrelationen
WirbeginnenunsereAnalyse,indemwirdier¨aumlichenKorrelationenindenGeschwin-
digkonsfunktioneitsfluktuationendesparallelenstudieren(||)(imAnteilsFderolgendenSCVF).GeschwindigkDienormalisierteeitsfluktuationenAutokwerdenorrelati-wie
folgtdefiniert(Segr´eet.al.(1997)):
ZusammenfassungDeutsche
450400400350350300(e)300(f)2502>*2002>*250
<x<x2001501501001.00.4/1.6100500.8/1.61.2/1.6501.41.2
1.61.6/1.60050010001500200000500100015002000
**time ttime t
9
Abbildung1.8:AlleKurvenliegenrelativgut¨ubereinander,wasdieTransformationsre-
gelninTabelleΩrechtfertigt.
,Σr)≡δiΣΦ)δiΣr)(1.2)
δiΣΦ))
wobeidieKlammern...einenEnsembledurchschnitt¨ubermehrereindividellunter-
schiedlicheKonfigurationenimRaumundindenOrientierungen(Ellipsoide)darstellen.
DabeistelltδvT=vT−vhECdieFluktuationeninderGeschwindigkeitundvhEC=iT
dieMittlereGeschwindigkeitderKonfigurationdar.FallsderAbstandrinderRichtung
genommenwird,diezurSchwerkraftparallelist,dannnennenwirdieparalleleKompo-
nente,Σk)=,oderfallssenkrechtdazu,dannnennenwirdiesenkrechteKomponente
,Σz)=,⊥.
1.9¨AnderungenimVolumenanteilundKollaps
Abbildung1.9zeigt,dassalleKurvendesSCVFf¨urKugelnundEllipsoideim(||)Anteil
zurSchwerkraft¨ubereinstimmen.HierbeiwirdderAbstandEEfΦV−(/0benutzt,wievon
¨esSegralse´et.bemerkal.(1997)enswert,vordassgeschlagen.sief¨ur¨BeiderAnderungendesUbereinstimmungVolumenanteilsderKurvbisenzumbetrachten60-fachenwir
g¨ultigist.DievonunsgefundenenKorrelationsl¨angenk¨onnenwiefolgtangegebenwer-
den:ξ⊥,heS=Ω2eEfφ−(/0;ξ,heS=Ψ´eEfφ−(/0,wassichnichterheblichvondenResul-
tatenfindetvonmanSegrauche´et.eineal.sehr(1997)gute¨unterscheidet.UbereinstimmungImderEllipsoidfKurvallen.(sieheDieWerteAbbildungf¨urdie1.9,Korre-(b)),
lationsl¨angesindξ⊥,Eaa=Ω)EEfΦ−(/0;ξ,Eaa=ΨΦEEfΦ−(/0.DieKorrelationsl¨angef¨ur
EllipsoideistinbeidenAnteilenkleineralsf¨urKugeln.
DietuationenAmplitudeistinderAbbildungparallelen1.10()darundgestellt.senkrechtenDie(⊥Graphik)enAnteilewerdenderineinerGeschwindigklog-logeitsfluk-Skala
dargestellt.F¨urΦ.ΦΦ)≤ΦV≤Φ.Φ0sindFluktuationengefundenworden,diesowohlf¨ur
10
1.20.8Sph,||0.4C
0
N()
1.20.0020.0040.0200.1200.8Ell,||0.4C
0
1.1.10¨AnderungderBeh¨altergr¨oße
0.0020.0040.0200.120)O(
replacementsPSfragPSfragreplacements−0.402040(N)−0.402040
−1/3−1/3r/(ReqΦV)r/(ReqΦV)
Abbildung1.9:Kollapsderr¨aumlichenKorrelationsfunktionf¨urden(||)Anteilf¨urKugeln
(b).Ellipsoideund(a)
. δδ||⊥ Ellip Ellip
010. δδ⊥|| Sph Sph . δδ||⊥ Ellip Ellip
−110−1102>Vδ⊥2Vδ>⊥
2>,<Vδ<||2>,<Vδ<||10−2
−210−310−31010−2ΦV10−110−2ΦV10−1
Abbildung1.10:DieoberenAbbildungenstellendier¨aumlichenKorrelationsfunktionen
f¨urKugelnundEllipsoideindenparallelen()undsenkrechten(⊥)AnteilenalsFunktion
)−EdesEfjTV=Ψ.ΦΨolumenanteilsderKinugelneinerunddaslog-logSkalaEllipsoid-Seitendar.DievReerh¨altnisynoldszahlistΔeist=Ω×Φ.(/ΨΦΨ.+,.derRadius
Kugeln,alsauchf¨urEllipsoidewie≈ΦV(/0(diegeradeLinie¨uberdenDaten)wachsen,
(Segre´et.al.(1997)).F¨urgr¨oßereVolumenanteileΦV>Φ.Φ0)werdendieFluktuationen
inbeidenAnteilen,f¨urKugelnundf¨urEllipsoide,verringert.
1.10¨AnderungderBeh¨altergr¨oße
WirstudierendieGeschwindigkeitsfluktuationenwieindervorhergehendenArbeitvon
Segre´et.al.(1997)undver¨anderndieKorrelationsl¨ange,umGr¨oßeneffektezuunter-
suchen.DieResultatesindinderAbbildung1.11f¨urKugeln(gestrichelt-punktierte
ZusammenfassungDeutsche
1.2
0.8>s/v||Vδ<0.4
0.4
>s/v⊥Vδ<0.2
11
0SphEllip0SphEllip
2060L/(ReqΦ100−1/31401804080L/(ReqΦ−1/3)120160
Abbildung1.11:DielinkeAbbildungzeigtdenparallelenAnteilderGeschwindigkeitsf-
luktuationenbeiver¨anderlicherBeh¨altergr¨oße.DierechteAbbildungzeigtdenvertikalen
Anteil.DieReynoldszahlistΩ×ΨΦ−),derRadiusderKugelnistEEfjT=Ψ.ΦΨ,unddas
Ellipsoid-Seitenverh¨altnisistΔe=Φ.(/Ψ.+.
Linie)undEllipsoidegezeigt(durchgezogeneLinie).DieBeh¨altergr¨oßenwerdenmit
A/ΣEEfjΦ−(/0)normalisiert.WieimFallvonSegre´et.al.(1997)undvonH¨ofler(2000)
zeigendieGeschwindigkeitsfluktuationeneineanf¨angliche¨Ubergangsregion,dieeine
starkeAbh¨angigkeitvonderBeh¨altergr¨oße,zwischenΩΦ≤A/ΣEEfΦ−(/0)≤ΨΦΦhaben.
DanachsinddieSimulationsdatenunabh¨angigvonderBeh¨altergr¨oße.ImAllgemeinen
zeigenEllipsoideundKugelndasgleicheVerhalten,abermiteinemkleinerenGesamt-
wertf¨urEllipsoide.WieerwartetwirdistdasVerh¨altnisdesParallelanteilsderGe-
schwindigkeitsfluktuationzumVertikalanteil⊥≈Ω.)f¨urKugelnundEllipsoide,Segre´
et.al.(1997).DergleicheWertf¨urbeidePartikelnformenbeweist,dassdasanisotro-
peVerhaltenderGeschwindigkeitsfluktuationvonderPartikelformunabh¨angigist.Die
durchdieSchwerkraftverursachteSymmetriebrechungwirktgleichermaßenaufKugeln
Ellipsoide.undCaflishandLuke(1985)fanden,dassdieGeschwindigkeitsfluktuationenbeiZunahme
derBeh¨altergr¨oßedivergierenk¨onnen.AndererseitswurdewederinExperimenten,Si-
mulationen,nochinderTheorieeinBeweisf¨ursolcheDivergenzengefunden.InH¨ofler
(2000)wirdargumentiert,dassSysteme,diedurchW¨andebegrenztsind,nichteinever-
gleichbareSkalierungderGeschwindigkeitsfluktuationenaufweisen.Stattdessenzeigen
sieeineS¨attigung,sobalddiekleinsteAusdehnungdesBeh¨alterseinekritischeGr¨oße
¨ubersteigt.EsbestehtdieSchwierigkeit,eineinzigesSkalierungesetzzufinden.Inunse-
renSimulationenwurdedieBeh¨altergr¨oßevariiert,indemmandiegesamtequadratische
Unterseite¨anderte.DieResultateinAbb.9.7(a)und(b)zeigenkeineDivergenzderGe-
schwindigkeitsfluktuationenf¨urKugelnoderEllipsoideundbewegensichsehrnahean
denResultaten,diedurchSegre´et.al.(1997)gegebenwerden.
12
1.1.10
¨Anderung
der
Beh¨altergr¨oße
2Chapter
oductionIntr
objectsfallingThe2.1
toThefollotreewleathevesshortestfluttertopath.theThegroundwayininwhichautumn,eobjectsxhibitingfallatothecomplexgroundmotionhasandbeenrefusingstudied
sinceGreeks.antiquityDuring.ObjectsRenaissance,wereGalileothoughttoGalileireturntodropped“theirtwonatural”metalballsplacesfrombythetheleaningancient
TNeowerwtonofshoPisawed,andthatshothewedthatbodiesthefyallfallonatearththedrisamevenratebyadespiteconstanthavingdifaccelerationferentandmasses.he
alsoobservedthecomplexmotionofobjectsfallinginbothairandwater(VietsandLee
(1971)).
Butdespitegravity’sundeniableattraction,notallfallingobjectstraveldownwardsin
straighttrajectories.Theconsiderationoffluidsurroundingtheobjects(figure2.1),in-
troducesaverycomplicatedandnonlinearinteractionbetweentheobjectandthefluid.
ThefirstpioneeringeffortwasmadebyMaxwell(1853),whowasthefirsttoconsiderthe
fluid-objectinteractionandproposedamodelforafallingpaperstrip.
Inthebeginning,theoreticiansmadefewassumptions
a)constrainedmotionin2-dwastakenintoaccount
c)b)vorticesconsideredinafluidfluidwerewithzeroignoredviscosity
Basedontheseassumptions,GustavKirchhofshowedthattheproblemreducestoasim-
plifiedsetofequationsthatcanbesolvedforsimpleparticlegeometries.Thismethod
alsoappearsintheHoracelamb’sclassictreatiseonhydrodynamics,(Lamb(1932)).
Adeeperunderstandingofthemotionoffallingobjectsinafluidisofgreattechnical
importance,andhasbeeninvestigatedinavarietyofcontexts,includingmeteorology
(Kajikawa(1982)),aircraftstability(Mises(1945)),powergeneration(Lugt(1983)),
chemicalengineering(Marchildonet.al.(1964)),andalsointhestudyofstabilityof
submarinesandthecentrifugationofcellsbybiologicaltechniques.
Inhoffthe’sninetiesequationsArefthatandtheJonestrajectory(1993),ofanfoundobjectbymomeansvingofthroughnumericalansolutionsincompressible,ofinKirch-vis-
13
14
objectsfallingThe2.2.1
Figure2.1:Imagesofthevorticessheddingby(a)arisingairbubble(KellyandWu1997)
theandfluid(b)amotionmetalduestriptoasaitfallsdispersionthroughofwsmallater(S.aluminumFieldetalparticles1998).intheItwisater.possibleThevtoorteseex
shedsineachcasearesynchronizedwiththezigzagmotionoftheobject.
cidandirrotationalfluidischaotic.TanabeandKaneko(1994,95)andMahadevanet.al.
(1995)usedaphenomenologicalmodelforthefallingofapieceofpaperin1-d.Theyin-
cludedtheliftandkinematicviscosity,butneglectedtheinertiaofthefluid,anddescribed
fivefallingregimesofwhichtwowerechaotic.Further,Mahadevan(1996)implemented
anolderworkpresentedinHoraceLamb’sclassictreatiseonhydrodynamicstotheprob-
lemoffallingcardsthattakesintoaccounttheeffectofthefluidasashape-dependent
renormalizationofthemassandthemomentofinertiatensor.Tumblinganddriftmotion
wereobservedwhichareaconsequenceoftheanisotropyinmassandviscosityinthe
model.Furthermore,Mahadevanet.al.(1999)alsomadeanexperimentbydroppingho-
rizontalcardsofthicknessRandwidthjshowingthatthetumblingfrequency,Ωscales
asΩ≈R(/)j−(,consistentwiththedimensionalargumentthatbalancesthedragagainst
.vitygra
inafluidAdditionallyand,Fieldidentifiedet.al.different(1997)invdynamicalestigatedreegimesasxperimentallyafunctiontheofbehatheviorofmomentfallingofinertiadisks
andtheReynoldsnumber.Theyobtainedexperimentalevidenceforchaoticintermittency
f(Bauerallinginet.aal.fluid,(1992)).observedtwBelmonteoet.motions:al.side(1998),tosideinaneoscillationxperiment(flutter)withandthinflatend-ovstripser-
endinertialrotationdragand(tumbling)liftwhichfigureΨ.reproducesΩ.TheythisproposedmotionaandyieldsphenomenologicaltheFroudemodelsimilarityincludingwhich
describesthetransitionfromflutteringtotumblingregime.
Inspiteofthislargeeffort,thegeneralproblemofthefallingofabodyininteractionwith
thesurroundingfluid(figure2.1),remainswithoutsolution.
oductionIntr
15
Figure2.2:Theimagesshowacollageofconsecutivevideofields(Belmonteet.al.1998)
oftwofundamentalmotions:side-to-sideoscillation(flutter)andend-over-endrotation
(tumble).
sedimentationparticleMany2.2
Thesedimentationofasystemofparticlesinafluidundertheactionofgravityisavery
importantprobleminfluiddynamicsandstatisticalphysics.Thisproblemhasmanyap-
plicationsinbasicsciencessuchasaerospacesciences,biophysics,environment,etc,and
inthefieldofengineeringe.g.chemicalreactors,contaminationspreading,ink-jetprint-
ing,fluidizedbeds,etc.Manynaturalprocessesinvolveparticlesimmersedinfluidsfor
example,bloodflux,particlesintheatmosphere,diffusionstudiesoforganellestransport
inlivingcells,papermaking,sedimentationinriversandlakes.Tounderstandsuchsys-
tems,abetterknowledgeinsedimentationandabilitytosimulatethesedimentbehavior
isverymuchrequired.Withthiswiderangeofapplications,theparticlesedimentation
stilllacksastatisticalmechanicalandfluiddynamicaldescriptionandremainsanopen
problem.
Sedimentationandstatisticalphysicshavealonganddistinguishedcommonhistory,be-
ginningwiththeclassicaltheoretical(Einstein(1906))andexperimental(Perrin(1916))
studiesofBrownianmotion.Theearlyworkdealtprimarilywithsuspensionsatornear
thermalequilibrium.Thismeantthatthesourceoffluctuationsinthesystemisathermal
bathcharacterizedbythetemperature.Thecorrelationandresponsefunctionsofphysical
observablesaretightlylinkedbyfluctuationdissipationrelations.Theinterestofphys-
icistsinthestatisticalmechanicsandhydrodynamicsofsuspensions(Pusey(1997))has
continuedtothepresentdaywiththefocusshiftingprogressivelytotheproblemsofsys-
temsfarfromequilibrium.Theeffectofshearflowonthestructureandcrystallizationof
suspensionshasreceivedagreatdealofattention(AckersonandClark(1984));thecon-
162.2.3Drivensuspensionandhydrodynamicdispersion
whereceptuallythereissimpleronavstateerageofnorelatisedimentationvemotion(Russeloftheet.al.particles.(1989),BlancandGuyon(1991))
2.3Drivensuspensionandhydrodynamicdispersion
Systemspresentingsteadilysedimentingsuspensionsareinanon-equilibriumstateand
thereforehavepropertiesqualitativelydifferentfromthesysteminthermalequilibriumin
twoimportantways.Firstly,thesuspendedparticlesaredenserthanthefluidandalsoin
ordertobalancebetweengravityandviscousdissipationonaveragethereisadownward
relatidisplayvespeed.randomparticleSecondly,motionirrespectievenveofwhenthetheparticlethermalbeingBrowniansedimentedmotionorisnesheared,gligible.they
Eachparticleinfluencestheotherinsuchawaythatthedynamicsishighlysensitiveto
initialconditions.TheresultingchaosasobservedinBradyandBossis(1985)andJ´anosi
et.al.(1997),impliesthatthetime-evolutionofthecoarse-grainedquantitiesmustbe
describeddynamicsinusingthedifabsencefusionofcoefthermalficientsBroandwniannoisemotionsources,iseentirelyventhoughdeterministic.theThismicroscopicphe-
nomenonofdiffusivebehaviorinducedbytheflowduetotheobjectsdriventhroughthe
fluid,intheabsenceofathermalnoiseiscalledhydrodynamicdiffusionorhydrodynamic
dispersion.Thisplacesmanyquestionsaboutthelarge-scalestructureandlong-timedy-
namicsofsedimentingorshearedsuspensionsmainlyinthedomainofnon-equilibrium
statisticalphysicsratherthantraditionalfluiddynamics.
Ingeneral,thesuspendedparticlesareacteduponbyBrownianandotherforces.If<iS
isthethermalBrowniandiffusivityofasoluteparticlewithradiusNinaflowwithtypical
velocitygradientγ˙aroundtheparticle,thenthePS´cletnumberPS,
PS=γ˙N)(2.1)
<iSisdifafusionindimensionlessthesuspension.measureofFortheaparticleimportancemoofvingparticle(foreflowxample,comparedsedimenting)tothewiththermala
speedithroughanunboundedfluid,
i(2.2)γ˙≈NFoforsolvaBroentwniandisplaced)sphereLof=bradius,UNsettlingandbuothroughyantaweightviscous(i.e.fluidweightatminustemperaturetheY.Gweightin
energyunits,thesettlingspeed,ihis:
ih=b,U(2.3)
ΓHere,UisaccelerationduetogravityandΓisthecoefficientofviscousdragofthefluid
(Γ=+πNνforasphere).TheEinsteinrelationtellsusthatthediffusivity,<iS=Y.G/Γ.
Thus,PS=b,UN/Y.Gisindependentofthekineticcoefficientsofthesystem.A
oductionIntr
replacementsPSfragFhpSecNcgNcg
>eSS−fSggaWcU
FSRWbScg
U
Batch2.3:Figuresedimentation.
17
suspensioninwhichPSisextremelylarge,(ΨΦ)ormore)isanon-Browniansuspension.
Insuchsuspensionsthephysicsisdominatedbythedrivingforce(gravityinthecaseof
sedimentation)andhydrodynamicswhereasthermalfluctuationsplayanegligiblerole.
InelectricalcontrastorDethermalGrootandcurrents,Mazurfluctuations(1984),andhnon-equilibriumydrodynamicsteadydiffusistatesvitiesinsuchdriasvenflownon-of
Browniansuspensionsaredeterminedbythedrivingforce.Theyhavenothingtodowith
thethermodynamictemperatureofthesystemandarehencenotconstrainedbyfluctu-
ationsdissipationrelations.EveninsuspensionswithPS=Ψ,therewillbesubstantial
non-equilibriumcontributionstodiffusion,fluctuationsandlinearresponseofthehydro-
interactions.dynamic
2.4Steadysedimentationandthefluidizedbedgeometry
Oneofthemostfamiliaraspectsofsedimentationistheseparation(figure2.3),ofasus-
pensionintosedimentandsupernatantwithafree-settlinglayerinbetween(Russelet.al.
(1989))understeadysedimentation.Thisstatecaninprincipleberealizedbystudying
18
2.2.4Steadysedimentationandthefluidizedbedgeometry
bed.Fluidized2.4:Figure
thefree-settlingregionalone,whilefeedinginparticlesfromthetoptocompensatethose
eouswhichformperpetuallythesediment.settlingstateAniselegtoantmowveaytheofachiereferencevingthisframeideawithinathespatiallysettlinghomogen-particles
inthe’fluidizedgeometry’(referenceXueet.al.(1995))asfollows.Subjectthesus-
pensiontoanupwardflowofspeediΦfrombelow(figure2.4).Thenumberdensity,cΦ
isspatiallyuniformandiscompatiblewiththeflowrate.Forsampleswhoselineardi-
mensionsarelargeinalldirectionsthebehavior,apartfromachangeofreferenceframe,
shouldsettlingbewithidenticalspeediinΦinthethebulktolaboratorythatofaframeincollectionanofunboundedparticlesfluid.withAlthoughnumbernotdensityallctheΦ
experimentsthathavebeenperformedinthefluidized-bedgeometryprobethestatistical
propertiesofsteady-statesedimentation,itisanidealsettingforsuchstudies.Thema-
jorityoftheexperiments,eventhoseperformedinconventionalbatchsedimentationare
arycarried.outThroughoutunderthethemanimplicity-ellipsoidassumptionpartofthatthisthethesisunderlyingwearestateconcernedisstatisticallywiththestation-nature
ofsuchasteadilysedimentingstateandfluctuationsaboutthisstate.
oductionIntr
19
Figure2.5:(a)Apairofparticlessettlingsidebysidesettlesfasterthananisolated
particle;(b)apairwithobliqueseparationvectorsettleswithasmallhorizontalcompon-
enttoitsvelocity.
2.5LowReynoldsnumberflow
TheReynoldsnumberES=IΣΩ∗EM)/νisameasureoftheratioofinertialtoviscous
forcesintheflowofafluidwithν=µ/ρthekinematicviscosityandµtheshearviscosity;
ρthemassdensity;withIandAbeingtheverticalvelocityandthelargestradiusofthe
ellipsoid,respectively.Forthesuspensions,ESrangesfromΨΦ−0upto(dependingupon
thevaluesofρandν.
IfweworkintheStokesianlimit,ES=Φ,severalimportantfeaturesofStokesianflowin
thepresenceofparticles(Russelet.al.(1989))canbesummarized.
(i)Theequationsofthefluidflowinthislimitarelinear.
(ii)AnisolatedsingleparticleofbuoyantweightWsettlingundergravityinanunbounded
containergivesrisetoavelocityfielddecayingasL/ewithdistance,efromtheparticle
toanypointinthefluid.
(iii)tlingAparticleslocalizedlikedensitywiseproducesfluctuationaΨ/eaboutvaelocitybackgroundfluctuation.ofuniformconcentrationofset-
(izero:v)Thetheyrelatineithervevelocityapproach,ofanrecedeisolatedfrompairnorofrotatesettlingaboutparticleseachinotheran.Iftheunboundedystartatfluidtheis
sameheight,theyfalltogether(figure2.5(a))ataspeedgreaterthanthatofanisolated
singleparticlesubjectedtothesameforce.Iftheyareinitiallyseparatedbothvertically
andhorizontally,theircenterofmassfallsnotverticallybutobliquelywiththevelocity
pointinginadirectionbetweentheverticalandthevectorjoiningtheupperparticleto
thatatthelowerposition(figure2.5(b)).
(v)Thedynamicsofthreeormoreparticlesiscomplexandchaotic(J´anosiet.al.(1997)).
20
2.2.6Velocityfluctuationsinhard-spheresedimentation
2.6Velocityfluctuationsinhard-spheresedimentation
AnapproximatetheoryinsedimentationbeginswiththepioneeringworkbyBatchelor
(Batchelor(1970)).Hecomputedtheparticlesedimentationvelocitybyassumingaho-
mogeneousspatialdistributioninthedilutelimittogetthemeanparticlesedimentation
velocity.Thetheorypredictsthatatsmallvolumefraction,φthesedimentationvelocity
be:will
(2.4)
IΣφ)/IΦ=Ψ−+.)φ+DΣφ))(2.4)
withIΦbeingtheequilibriumvelocityofasphere.
Ingeneral,thisproblemrevealsaverycomplicatedmulti-bodyinteractionduetothe
long-rangehydrodynamicinteractionthatdecaysforasphereasΨ/e(Batchelor(1970))
wherenumbere.isThetheparticledistancevfromelocitiesthecanparticlefluctuateforaaroundspatiallytheinfinitemean,systembothatalongsmalltheRegraynoldsvity
(theaboutvtheertical)natureandofthethesevperpendicularelocityfluctuationsdirectionRamasw(horizontalamyplane).(2001).Verylittleisunderstood
Apartfromrecentadvancesinthefieldthisoldsubjectofsuspensiondynamicsposesex-
citingproblemsinthefrontiersofnon-equilibriumstatisticalphysics.Muchprogresshas
eralbeenpuzzlesmadeonremainthisasproblemdivergingbotheviewsdoxperimentallyontheandbasicissues.theoreticallyWe.Atdescribethesameeachtime,problemsev-
firstandoutlinetheprogressmade.
2.6.1CaflischandLuke’swork
AsevereprobleminthestatisticalphysicsofsedimentationwaspointedoutbyCaflisch
andLuke(hereafterCLCaflishandLuke(1985)).Averybriefresumeisgivenhere.
Considerasteadilysedimentingfluid-likesuspension(seesection1.3)ofhardspheres.
Aconcentrationfluctuationneartheorigininthissuspensionisapoint-likeforcedensity
andinthreedimension,givesrisetoavelocityfluctuationdecayingasΨ/ewithebeing
ultingfrommanyspatiallydistributedconcentrationfluctuationsissimplythesum,iT
distancefromtheorigin.ThelinearityofStokesflowimpliesthatthevelocityfieldres-
oftheindividualcontributions.Ifthesefluctuationstakeplaceinarandomandspatially)
uncorrelatedmannerthroughoutthesuspension,theresultingvarianceinvelocity,σvat
anypointinthesuspensionwouldbeclearlythesumofthesquaresoftheindividualcon-
tributions.ThisiT)hasC≈A0termsifthereareCsoluteparticlesinacontainerof
lineardimension,Ainalldirections.TheΨ/eformmentionedaboveforthevelocityfluc-
tuationproducedbyalocalizedconcentrationfluctuationmeansthatiT)≈A−)sothat
σv)≈A.SuchadivergingvarianceintheinfiniteAlimit,posesseriousproblemsinthe
calculations(Batchelor(1970)),ofthemeansettlingspeedinanunboundedsuspension.
MostexperimentsfindsizeindependenceunlikethepredictionbyCaflischandLukebut
thereareseriousquestions(Brenner(1999)),thatcanbeaskedabouttheinterpretationof
themeasurements.Itisfairtosaythatexperimentshaveneitherconfirmedthe,Apredic-
tionsnordefinitelyruledthemout.Itshouldofcoursebenotedthat,Af’predictions’
oductionIntr
21
saythatiftheconcentrationfluctuationsarestatisticallyindependentfromonepointto
anotherinspacethenthevelocityvariancediverges.Sufficientlystronganticorrelations
intheparticleconcentrationfieldatlargelengthscaleswillsuppressthe,Adivergence.
Clearlywhatisnecessaryisatheorythattacklesconcentrationandvelocityfluctuations
onthesamefootinginsteadofpostulatingtheoneandinferringtheother.
2.6.2Resumeofexperimentsandsimulations
Experimentsonthevelocity-fluctuationsproblemuseawiderangeoftechniquesinclud-
ofingthetrackingparticlestheinvanelocityfieldilluminatedbyreparticlegion(Toryimaginget.(Seal.gre´et.(1992)al.and(1997)),Leiet.directal.counting(2001)),
’diftagged’fusing-waparticlesveinaspectroscopsuspensiony(Xueofet.otherwiseal.(1995)),indexmatchedtrackingthespheresmotion(Toryofet.al.individual(1992,
Nicolai(2000)).et.Ithasal.been(1995))claimedandbysingleSegrase´wellet.al.as(1997)multipleandNicolaisound-scatteringand(CoGuazelliwanet.(1995),al.
awithonesize-independentsignificantvealuebxceptionutthisofToryinterpretationet.al.has(1992),beenthatthecriticizedbyfluctuationsBrennersaturate(1999).to
NumericalsimulationsbyLadd(1996)showclearevidenceofsize-dependenceoverthe
theserangeofstudiesAewerexplored,probingalthoughscalesitisarsmallerguedbythanSeagrlare´geet.al.screening(1997)thatlength.thisH¨woflerasbecause(2000)
citypointedoutfluctuations.thattheIfthesmallestsmallestdimensiondimensionoftheiscontainerincreased,thecontrolvtheelocitymagnitudefluctuationsofthevincreaseelo-
uptoalimitandareindependentofthecontainersize.
ThereisalsoaclassofexperimentsbyRouyeret.al.(1999),whichseparatestheprob-
lemofhydrodynamicdiffusionandnon-equilibriumstatisticalbehaviorinfluidizedbeds
fromthequestionofwhetherthevelocityvariancediverges.Thisisaccomplishedby
workingwithasuspensioninaneffectivelytwo-dimensionalgeometry,i.e.withlength,
Aandwidth,Lmuchlargerthanthethickness,δ,andδslightlylargerthantheparticle
size.Thisyieldsasystemwhoselocalhydrodynamicsisthreedimensional,sothathy-
drodynamicdispersiontakeplacewithlong-rangeeffectsincludinganypossibleCaflisch
ityLukedistribdiverutiongenceofthescreenedvelocityoutonfluctuationslateralscalesofh>>yperdifδ.fusiTheveparticlemeasurementsintheseofethexperimentsprobabil-
thestilllackaparticle-imagingtheory.ThevworkelocimetryofXueofSeet.gral.´eet.(1995)al.(1997)usingdifalsofusing-wbroadlyavfeallinspectroscopthiscateygoryand.
Butwiththethesequestioninterestingoftheanddiverimportantgentveelocityxperimentsvariance.doThenotconfinedspecificallyexperimentalconcernthemselvgeometryes
hoandwethever,isnotionof(Serelevgre´anceetal.since(2001))thedeofvanelopmenteffectivofeourtemperaturesimulationsisarecentralmadetothebasedonstochasticthat
P</approachofLevineet.al.(1998).
2.6.3Sometheoreticalapproaches
al.Apart(2000)fromseemthetoideashavinevruledolvingoutparticleprettyorconclusifluidvelyinertia,therewhichhaveebeenxperimentspreciselybyCofourwanthe-et.
22
particlesNon-Spherical2.2.7
(∂Foretical)(KochattemptsandtogoShaqfehbeyond(1991))whatwereCaflischthefirstandtoLukare,gue,Athathavaedone.mechanismKochandanalogousShaqfehto
screeningoftheCoulombinteractioninelectrolytesmightworkinsedimentingsuspen-
sions.dynamicallyTheystartedinteractingfromaparticlesmicroscopicandshowedstatisticalthatdescriptionthree-particleoftheencounterssedimentingcouldhleadydro-to
aentscreeningmeasurementsofthe,Acoulddiverpredictgence.whetherTheyahagivveennot,hosuspensionwever,isscreenedmentionedorthatnot.independ-Brenner
ar(1999)guingthatassumedthethe,AinterpretationmechanismoftheebutxperimentsquestionedbySethegree´et.videnceal.in(1997)favorareofgreatlyscreening,com-
plicatedbytheproximatewallsofthecontainer.Thecoarse-grainedapproachofLevine
et.locityal.fields(1998)ofaconsistssedimentingofthestochasticsuspension.equationsThisofretainsmotiononlyforthosethetermsconcentrationwhichanddominateve-
atlargelengthscalesassumingnorelationsamongstthephenomenologicalparameters
otherunderlyingthanthosetheoriesforcedofbydynamicalthesymmetriescriticalofthephenomenaproblem.(HalperinTheandspiritisHohenberidenticalgto(1977)),those
thehydrodynamicsoforderedphases(Martinet.al.(1972))orindeedthefluctuating
Navier-Stokesequations(LandauandLifshitz(1969)).
Thestationaryimportantdifconfigurationferenceisthatprobabilitiesaresedimentationnotgiisvenabyanon-equilibriumBoltzmann-Gibbssteadystate,distribwhereution
withrespecttoanenergyfunctionbutcanbeobtainedbysolvingtheequationsofmotion.
Thisapproachyieldsaphasediagramforsteadysedimentationcontainingan’un-
screened’phaseinwhichthevelocityvarianceΩidivergesasaasobservedin,A,and
a’nally,Tscreened’ongandphaseAckinersonwhich(1998)Ωimadesaturatesanfor’intriguingA’greaterobservthanationthethatthescreeningmodellengthξequations.Fi-
forthermalconsedimentationvectionatatlarlargegePSPrandtlandsmallandReRayleighynoldsnumbers.numberESTheareidenticalsedimentationtothoseproblemfor
dealswiththeconcentrationfieldwhereastheconvectionproblemdealswiththetem-
peratureRayleigh-Bernardfield.TheyturbthenulencetotranscribedargueforresultsscreeningfromandKraichnan’hence,sforamixing-lengthfinitevelocitytheoryvari-for
anceinsteadylowReynolds-numbersedimentation.Animportantdifferencebetween
TanonguniformandAckersonconcentration,(1998)whileandthewhereaseconxperimentsvectionisisthatdrithevenlatterbyanwereimposedundertakingtemperaturewith
gradient.
2.7particlesNon-Spherical
Asmentionedabove,manyoftheinvestigationshavebeenmadeonspheresandina
reducedmanneronslenderbodies,(e.g.fibers)byRamaswamy(2001)andBatch-
elor(1970).Ellipsoidalparticles(figureΨ.+),havefoundanapplicationinthemodeling
ofthebloodflowOlla(1999).Fibers,ontheotherhand,havenumeroustechnological
applications,thepapermanufacturing,transportandrefiningpetroleum,pharmaceutical
smallerprocessingvolumeandenfractionsvironmentalwhichwisastecharacterizedtreatment..byThetheyshowsedimentationorientationalvelocitytransitionthathasfora
oductionIntr
23
Figure2.6:Snapshotoftheoblateellipsoidsfallinginafluid.Thepictureshowsthe
distance“cluster”isgivformationeninunitsalongofthetheflaralling.gerTheradius,Eellipsoidandtheaspect-ratioReynoldsisΔe=numberΦ.(/isΨ.E),Sthe=
M(∗ΨΦ−).
globalmaximumaroundthetransitioninstationarystate,Kuuselaet.al.(2003).
Withthisbackground,theinvestigationofthesedimentationofnon-sphericalparticles
isfundamental.Anunderstandingofthesettlementmovement,orientationandspatial
distributionofparticlesindrivenflowsiscrucialforthistask.
viewerOv2.8
InthisthesisIpresentanumericalstudyofthedynamicsofoneandmanyfallingob-
lateellipsoidsparticleinaviscousfluid,inthreedimensions,usingaconstrained-force
24
viewerOv2.2.8
Figure2.7:Asectionofatridimensionalfallingoblateellipsoid.Thesystemsizeis
Re)Φ×ynoldsΨ1Φ×)ΦnumbertheisoblateΩ∗ΨΦ−),aspect-ratioandtheisΦratio.Ω/ofΨ.Φtheinfluidunitsofdensitythelarovgerertheellipsoidellipsoidradius.densityThe
.).´is
technique(H¨oflerandSchwarzer(2000);H¨ofler(2000);Kuuselaet.al.(2001)),under
gravitytablishing.Wethestudytypestheoffallingdynamicalmotionsbehaviorandforfindingaatypicaldosimilaritywnwlaardwformotion,regularfig.Ψ.0motions.,es-
Wemotion.proposeInamanmechanismy-particlesfor(ellipsoids)understandthesedimentationtransitions(figurebetweenΨ.+),Ithestudydiftheferentssettlingtypesvofe-
locityandtheaverageorientationoftheellipsoidsasafunctionofthevolumefraction.
Wealsoinvestigatethediffusivebehaviorofasedimentingellipsoidatlowandmoderate
Reellipsoidsynoldsandnumberspheres.Finallyonthe,wesizeshowcontainerthe.dependenceofthesedimentationdynamicsof
oductionIntr
25
Inchapter2webrieflypresentthefluiddynamicalbasisofthemodelandweexplain
thebasicingredientsofthemodel.Inchapter3weshowthebasicphenomenologyof
thefallingofoneoblateellipsoidineachregime(steady-falling,periodic-oscillationand
chaoticmotion)ofthesystemandwecompareourresultswithpreviousworks.Inchapter
4weinvestigatethedynamicsbehindeachregime.Fortheperiodicandsteady-falling
regimewefindasimilaritylawderivedfromtheinvarianceoftheReynoldsandFroude
number.Inthechaoticregimethetrajectoryoftheoblateellipsoidischaracterizedbya
highsensitivitytotinyvariationsintheinitialorientation.
Inchapter5aphasediagramispresentedandcomparedtotheresultsofFieldet.al.
(1997).Thetransitionfromoscillatorytosteady-fallingoccursatESB=´)),where
thetransienttimeofoscillationinthesteady-fallingregimetendstoinfinity,beyondthis
valuethesystemisoscillatory.ThetransienttimehasapowerlawdivergenceatESBwith
anexponentof0.5.Thetransitionfromsteady-fallingtochaoticregimebecomesabrupt,
foracertainvalueoftheellipsoidradii.
Inchapter6westudythesettlingvelocityandtheaverageorientationoftheellipsoidsas
afunctionofvolumefraction.Weseethatthesettlingvelocityshowsalocalmaximum
attheintermediatedensitiesunlikethespheres.Theaverageorientationoftheellipsoids
alsoshowsasimilarlocalmaximumandweobservethatthislocalmaximumdisappears
astheReynoldsnumberisincreased.Also,atsmallvolumefractions,weobservethat
theoblateellipsoidsexhibitanorientationalclusteringeffectinalignmentwithgravity
accompaniedbystrongdensityfluctuations.Theverticalandhorizontalfluctuationsof
theoblateellipsoidsaresmallcomparedtothatofthespheres.
Inchapter7weinvestigatethediffusivebehaviorofsedimentingellipsoidsatlowand
moderateReynoldsnumber.Webeginintroducingthecommontheoreticaltoolsused
tostudythediffusivebehaviorofsedimentingparticles.Wealsodiscusstheresultsfor
ellipsoidsincomparisontotheequivalentspheres.Moreover,westudythebehaviorofthe
sedimentingspheresandellipsoidsundervariationsofthekinematicviscosity,ellipsoid
densityandaspect-ratio.Furthermore,wepresenttheorientationaldiffusionbehavior.
Additionally,weshowtheanomalousdiffusionforellipsoids.
Finallyinchapter8wepresentthedynamicalbehaviorofsedimentingellipsoidsand
spheresundervariationsofthecontainersize.Westudytheinfluenceonthespatialcor-
relationsastheparticulatevolumefractionischanged,comparingtheresultsforellipsoids
andspheres.Wealsopresentthestudyofthevelocityfluctuationsasafunctionofthe
volumefraction.Afterthat,weinvestigatethedivergenceofthevelocityfluctuationsas
changed.issizecontainerthe
26
2.2.8
viewerOv
3Chapter
Model
Thischapterlaysoutthegeneraltechniqueusedformodelingthephysicsofoneand
manysedimentingellipsoids.Weintroducetheimportantquantitiesandterminologies
thatareemployedintherestofthethesis.Inthefirstsectionwepresentbasicresultsof
fluiddynamics.Next,adescriptionoffluidandparticlecouplingispresented.Finally,
theellipsoidcontactmethodfortheellipsoid-ellipsoidinteractionissketched.
3.1Navier-Stokesequations
Fluidisdefinedasthestateofmatterthatcannotsustainanyshearstress.Foranelastic
solid,thestrainincreaseswithtimeandattainsasteadyvaluewhereas,forafluiditin-
creasesindefinitelywithtime.Inthemathematicaldescriptionofafluidflow,theflow
quantitiessuchasvelocity,pressureareassumedtovarycontinuously.Inviewofthe
particlenatureofmatter,thevalidityofthisassumptioncanbequestioned.Ifthemean
freepathofthemoleculesiscomparablewiththecharacteristicdimensionofthemac-
roscopicflow,thecontinuousapproximationbreaksdown.Standingbythiscontinuous
hypothesis,onecanderivetheconservationofmassinthefluidflowbywritingtheglobal
equationforthemassofthefluidinsideafixedvolume.ConsideranarbitraryvolumeK,
fixedinareferenceframeusedfordescribingtheflowoffluidandboundedbyaclosed
surfaceF.Ateveryinstantoftime,fluidentersandexitsfromthisvolume.Therate
ofchangeofthemass,bcontainedwithinthevolumeisequalandoppositetotheflux
leavingtheboundarysurface.Thenwehave
RbR
Rg=RgVρMRK=−<ρMv∙nRF(3.1)
wherenistheoutwardunitvectornormaltothesurface,FoftheboundaryandKisthe
volume.SinceKisfixedwecaninterchangetheorderofintegrationanddifferentiation
withrespecttotime.Further,byapplyingtheGauss’sdivergencetheorem,weobtain:
∂∂ρgM+∙ΣρMv)=Φ(3.2)
27
28
3.3.1Navier-Stokesequations
Makinganexplicitdifferentiationoftheterm∙ΣρMv)andgroupingweget,
ρ∂Σ∂gM+v∙ΣρM))+ρM∙Σv)=Φ(3.3)
Thefirsttermoftheaboveequationisknownastheconvectivederivativecorresponding
totheLagrangiandescriptionandthereforewecanrewrite3.3as
RρM+ρM∙Σv)=Φ(3.4)
Rgwhichshowsconservationofmass.
3.1.1Thegeneralequationforthedynamicsofthefluid
WesolveNewton’sequationofmotion
RgRρMvRτ=ρMΩRτ+[σ4∙nRΣ(3.5)
<VVwhereRτisthedifferentialvolumeoffluid,RΣisthesurfaceelementoftheclosedsur-
face,FthatboundsK,and[σ4isthetensorofallthe(pressureandviscosity)forcesacting
onRΣ.ThevolumeforceΩperunitmassoffluidcouldbethegravitationalforce.
Thewiththederivatifluid,vethenR/RgtheisaproductLagrangianρRτisderivaticonstant,ve,easvitaluatedmovesinthealongthereferencelocalvframeelocitymofieldving
Moftheflow.ApplyingGaussdivergencetheoremtothesecondtermontherighthandside
3.5wecanwriteequation3.5as
Mρ
VRgvRτ=VρMΩRτ+V∙[σ4Rτ(3.6)
Takingthelimitasvolumetendstozeroanddividingbythevalueofthevolumeelement,
weobtainthelocalequationofmotionforaparticleoffluid:
ρMv=ρMΩ+∙[σ4(3.7)
Rg[σ4canbewrittenas[σ4=[σ4−pδTU.
evhaweThen
pδ∂TU∙[σ4)T=∙[σ4T−∂kU
(3.8)
Model
becomes3.7equationThen
29
ρMRv=ρMΩ−p+∙[σ4(3.9)
RgThisequationisapplicabletoanyfluid.IfwestudythemotionofaNewtonianfluidthen
wecanexpressσas
)∙[σ4=µ∂iT+Σξ+µ)∂∂ia(3.10)
∂kT∂kU´∂kT∂ka
Onsubstitutingineq.3.6,weobtaintheequationofmotionforacompressibleorincom-
fluid:wtonianNepressible
ρM∂v+ρMΣv∙)v=ρMΩ−p+µ)v+Σξ+µ)Σ∙v)(3.11)
´g∂Ifthecompressibilityeffectsarenegligibleinthefluidflowthen∙v=Φ.Theresulting
equationistheNavier-Stokesequations:
ρM∂∂gv+ρMΣv∙)v=ρMΩ−p+µ)v(3.12)
3.1.2ThedimensionlessformoftheNavier-Stokesequation
WecanalsowritetheNavier-Stokesequation,eq.3.12,intermsofdimensionlesspara-
meters(thatarelabeledwith’primes’).LetAandIbetherespectivescalingfactors
forthespatialcharacteristiclength(particlediameter)andvelocityofthesedimenting
particle.Thenwehave:
and
r=r,v=v
IA
(3.13)
Fp−p
g=A/I,p=Ψ/ΩρMI)(3.14)
Indefiningp,thevalueofpΦhasbeensubtracted,whichisthehydrostaticpressure.After
dividingeachsidebyρMI)/A,theNavier-Stokesequationbecomes:
∂∂gv+Σv∙)v=−p+EΨS)v+>e)Σ−g)(3.15)
30
conditionsBoundary3.3.2
Intheaboveequation,theinverseoftheRe)ynoldsnumberES=AIρM/µassociatedwith
theflowappearsasafactorofthetermv.Itisfoundthatthisnumberrepresentsthe
ratioofthenon-linearconvectivetermΣv∙)vtotheviscoustermµ)v.Wedefine
>e)=UA/I)astheFroudenumber.Fromtheaboveequation,thevelocityandpressure
fields(vandp)thatsatisfytheappropiateboundaryconditionsforagivenproblem,are
form:theof
v=FΣk,l,z,g,ES,>e)
p=GΣk,l,z,g,ES,>e)
(3.16)(3.17)
where>andGarefunctionsthataredependentontheflow.Wemakeuseofthisin
.)Chapter
Boundary3.2conditions
teThegrationcompleteofthesolutionequationforofthemotionmotionofoftheafluidfluidvparticleselocityandfield,thevΣr,g)specificationincludesofboth,boundarythein-
conditions;i.e.,thevalueofthevariablesatalltheboundariesofthefluid.
Boundaryconditionsvarydependingonwhethertheboundaryissolidorafluid.Inthe
casesolidofarequiressolidthatwallthebeingcomponentaboundaryofthe,vthefelocityactthatnormalthetofluidthecannotboundarypenetratesurfaceintoshouldthe
beequalforthefluidandthesolid:
modelThe3.3
viodad∙n=vflkad∙n
(3.18)
Thegeneralideaofourapproach,proposedbyFogelsonandPeskin(Fogelson(1988)),
istoworkwithasimplegridbyresolvingthefluidmotionatalltimesandrepresentthe
particlesnotasboundaryconditionstothefluid,butbyavolumeforcetermorLagrange
multipliersintheNavier-Stokesequations.Thistechniquewasdevelopedintheworkby
Schwarzeret.al.(H¨oflerandSchwarzer(2000)),H¨ofler(2000),Kuuselaet.al.(Kuusela
et.al.(2001)),Wachmann,etal.(WachmannandSchwarzer(1998)).Thisemploys
anumericalsolverforthedynamicalsimulationofthree-dimensionalrigidparticlesina
Newtonianfluid,boundedbyarectangularcontainer.Theequation3.12isdiscretizedona
regular,marker-and-cellmeshtosecondorderprecisioninspace.Forthetimeevolution,
weemployanoperator-splitting-techniquewhichisexplicitandaccuratetofirstorder.
Thesuspendingfluidissubjectedtono-slipboundaryconditionsatthesurfaceofthe
particles.MoredetailsarepresentedinKuuselaet.al.(2001),H¨oflerandSchwarzer
(2000).ofler¨H(2000),
Model
Figure3.1:Thepictureshowsthedistributionforcebetweenparticleandthefluid
31
Anoblateellipsoidisrepresentedbyarigidtemplateconnectedtothefluidtracer
straintparticles.ontheThisfluidisindoneorderbytothebodydescribeforcetheoblateterm,intheellipsoid.NavierThe-StokforceesdensityequationΩB,isasachosencon-
tobespringlike.WedefinethisforcedensityΩBas:
ΩB=TBΣxab+Σxab))=−YΣxab)(3.19)
wherexabisthedisplacementfieldoftheseparationbetweenthemarkersWandtheir
correspondingreferencepointX.ThestiffnessconstantY,mustbechosenlargeenough
sothat|Σxab)|V,Vbeingthesizeofthegrid,holdsforalliterations.
Ingeneral,thedisplacementfieldΣxab)isdefinedas:
aΣxabb)=xabb−xabg(3.20)
Thevector,xabbisthepositionofafluidtracerwhosemotionisdeterminedbythelocal
i.e.,,elocityvfluid
x˙abb=IΣxbTU)(3.21)
Thexabgarethereferencepointsassociatedwiththetemplatehavingtheshapeofthe
particle:ysicalph
xabg=xT+DTΣg).rTU
(3.22)
HerexTisthecenterofmassofthetemplate,DTΣg)istherotationmatrixthatdescribes
theinstantaneousorientationoftheoblateellipsoidandrabdenotetheinitialpositions
32
The3.3.3model
ofthereferencepointswithrespecttothecenterofmass.Rotationisdescribedbythe
quaternionformulationasinAllenandTilsdesley(1987).Theequationsofmotionofthe
are:templateparticle
and
F˙=UB
˙I=Ω
(3.23)
(3.24)
whereBisthemassofthetemplateparticle;UandΩarethelinearandangularvelocities
ofthetemplateparticle,respectively;Iisthemomentofinertiaoftheoblateellipsoid
withonlythreenon-zeroelements,I((,I)),I00whereI((>I))=I00(Goldsteinet.al.
(2002))andisthetorque,(Kuuselaet.al.(2001),H¨oflerandSchwarzer(2000)).The
boundaryconditionsnearthecontainerwallare:thenormalvelocitycomponentofthe
fluidiszero,thewallsareassumedtobeimpenetrable,becauseofano-slipcondition
forthetangentialcomponent(H¨oflerandSchwarzer(2000),WachmannandSchwarzer
(1998)).Theinteractionbetweentheoblateellipsoidandthewallsisdefinedthrougha
contactforce(PerramandRasmussen(1996)andKuuselaet.al.(2001)),wherethewalls
aretreatedasaparticlewithinfinitemassandinfiniteradius.Avelocity-Verletintegrator
(Presset.al.(1992))servestointegratetheequationsofmotionforthetranslationanda
Gear-predictorintegrator(AllenandTilsdesley(1987))fortherotationofthetemplate:
F=−BUˆX+ρMKUˆX+ΩTB+ΩTe(3.25)
TwhereˆXistheunitvectoralongtheverticalw.r.tthetemplate’scenterofmassrBb.
(3.26)
=Σxa−xTm)×ΩTB(3.26)
Twithrespecttothetemplate’scenterofmassrBb.
Thedefinedasgeometrytheofratiotheoftheoblatesmallestellipsoidradius,isEbtocharacterizedthelargestbyΔe,radius,itsEM:aspect-ratiowhichis
Δe=EEb(3.27)
MWedefineanequivalentspherefortheoblateellipsoid,asthespherethathasthesame
volume,withanequivalentradius:
EEfjT=3EbE)M(3.28)
Model
TherespectiveStokesvelocity:
33
ΩUE)EfjTΣρρfellip−Ψ)
ih=2ν(3.29)
withρEaa,Tetheellipsoiddensity,ρMbeingthefluiddensity,νthefluidkinematicviscosity
andUthegravity.
WedefinetheunitStokestimeghasthetimeneededforanisolatedellipsoidtogoesover
adistanceofone-ellipsoidlargerradius,EMwithavelocityih,as:
EMgh=ih(3.30)
functionContact3.4
Thereisaconsiderableamountofliteratureinwhichmodelsforsoftpotentialsbetween
nonsphericalparticles(e.g.,oblateellipsoids)areemployedinordertosimulatethebeha-
itviorisofnecessarysimpletomoleculesdetermineandtheliquidforce,>ecrystals.duetoThetheinterestinellipsoid-ellipsoidthepotentialcontacts.arisesbecause
TThelubricationcontacttheoryatlowReynoldsnumberestablishesthatthepresenceof
fluidsmoothlyavoidsthetouchingofellipsoid-ellipsoidsurfaces.Inthealgorithmthese
forcesarecapturedcorrectlyonlyonscaleslargerthanthegridresolution.Sincewe
arewellipsoidalorkingsurfwithacesdilutearerare.systemsWithatvtheeryaimlowofvolumerestrictingfraction,significantcloseparticleencountersoverlappingbetween
arepulsiveforceisintroducedbetweentheellipsoidsandischosentobeproportional
totheirintermediateoverlap.distancesIfthethehoblateydrodynamicellipsoidsareforcesnon-odescribingverlapping,theethexistenceforceofisthezerofluidaandvoidat
thecontactbetweentheparticles(Kuuselaet.al.2001).
WeconsidertwoellipsoidslabeledAandBwithsemi-axesN,O,PandN,O,P,respect-
ively.Therotationalstateoftheellipsoidisexpressedbythe()sets,0h(,h),(h0)and0i(,i),i0
ofareatrorthonormalandrunitrespectivvectorsely,thealongtheintercenterprincipalvectoraxisisofdefinedthetwas:oellipsoids.Ifthecenters
fl
andthematricesψand.are:
R=r−rfl
ψ=NV−)IcIcT
V.=OV−)vcvcT
V
(3.31)
(3.32)(3.33)
34
3.3.4functionContact
Inthecasewherenoneofthesemi-axesvanishes,thesematriceshavetheinverses
ψ−(=NV)IcIcT
V
(3.34)
.−(=OV)vcvcT(3.35)
VPerramandWertheimhavederivedtheobjectfunction,FΣλ)(PerramandRasmussen
1996)and(Kuuselaet.al.2001):
FΣλ)=λΣΨ−λ)E/[ΣΨ−λ)ψ−(+Σλ).−(4−(E(3.36)
FΣλ)=λΣΨ−λ)E/[ΣΨ−λ)ψ−(+Σλ).−(4−(E(3.37)
whereλisaparameter.FΣλ)isnon-negativeforλ∈[Φ,Ψ4.Thenthecontactfunction
>Σψ,.)forthetwoellipsoidsis
>Σψ,.)=[bNkFΣλ)|λ[ΦΨ44(3.38)
If>Σψ,.)σΨ,thetwoellipsoidsoverlap,if>Σψ,.)>Ψ,theydonotandif>Σψ,.)=
Ψ,thetwoellipsoidsareexternallytangent.
4Chapter
Phenomenology
Inthisthechapterprecedingwewillchapterapplywethishavemodelandpresentedseethethemodelcommonofphtheysicalsedimentingphenomenaellipsoids.associatedIn
tothefallingoblateellipsoids.Wewillpresentthethreephasesthatwefound,andthe
terminologiesbidimensionalthatonewillbeelaboratedusedbyintheMahadenextvan.chapters.ThevWeelocityalsofieldcompareforthethisfluidmodelaroundwiththethe
fallingellipsoidisshownandcomparedwiththeworkbyBelmonteet.al.(1998).We
presentinaqualitativewaythepresenceofvorticesinthefluid.
4.1Trajectoriesofafallingoblateellipsoid
Wefoundthreedifferentkindsofmotioninoursimulations:steady-falling,side-to-side
orwhichareshoperiodic-oscillation,wninfig.kno4.1.wnTheseasflutterkindsof(Belmontemotionareet.al.called(1998))patterns,andreagimes,chaoticormotion,phases
intheliteratureandweshallusethetermphaseinthisthesis.
eIngeneral,xperimentalthesetup.numberButofitisphasespossibledependstoonclassifythethespecificphasesmodelintoandtwothelargeconditionssetsofnamelythe,
a)regularandsmoothoscillationsandb)irregularandchaoticoscillations.Forexample,
Tsionalanabeandmodel:Kanekthreeoregular(1994,95),andtwoidentifiedchaotic.fivInefaneallingxperimentalphaseswusingorkawithsimplifieddroppingbidimen-disks,
asFieldshoet.wnal.infig.(1997)4.2.reportedAndlastlyfour,phasesBelmonteofet.whichal.three(1998),werereobservgularedaandreonegularwasoscillatorychaotic
androtationalphaseintheirexperimentswiththinstrips.
Inthemajorityofcases,thetrajectoriesinoursimulationsdependstronglyontheinitial
cosityconditionsνandandthetheoblatepropertiesaspect-ratiooftheΔesystem).In(oblate’orderstoinitialreducetheorientationparameterΘd,spacekinematicinvis-our
system,wefixρMajTC=ΨBbR3andρd∂aiE=´.)BbR3inoursimulations.
35
36
240(a1)180Position in Y12060
0
4.4.1Trajectoriesofafallingoblateellipsoid
(b1)
(I)
(c1)
−258118178238298
Position in X
Figure4.1:Typicalfallingtrajectoriesobtainedinoursimulations.FigureIshowsthe
componentsYΣiSegWPNa)−MΣVdeWzdcgNa)inthesteady-fallingregime,ΣNΨ),withinitial
conditionsθd=Ω+.+Φ,Δe=Φ.Ω),ν=Φ.Φ´´andΣN)Vd=Ω(Φ;ΣOΨ)periodic-oscillation
withinitialconditions:ν=Φ.ΦΩ),Vd=Ω(Φ,Δe=Φ.Ψ´´andθΦ=+´.(d.ΣPΨ)chaotic
motion,withinitialconditionsVd=Ω(Φ,Δe=Φ.Ω),ν=Φ.Φ´´andΣN)θΦ=Ω+.+d.
TheFigureimages4.2:Twererajectoriesobtainedoffallingfromthedisks,sidebypresentedusinginathewvideoorkbycamara.BelmonteTheetal,trajectory(1998).in
(a)correspondstothesteady-fallingregime,(b),periodic-oscillatingmotion,(c)chaotic
motionand(d)thetumblingmotion.
Phenomenology
Comparison vertical velocity and trajectoryChange of Vertical Velocity4.8TrajectoryVyFirst peak−to−peak amplitudeL14210Fourth AmplitudeL23.2Terminal VelocityL3140Vertical Velocity VyPosition in Y2.4L4L51.670L60.8L7Decreasing peak−to−peak amplitude amplitude0048Position in X & Vertical velocity12160510Time t(t15)202530
s1
0.60.2Horizontal Velocity Vx−0.2−0.6
−107142128
)Time t(ts
37
theFiguresame4.3:height.(Left)(Right)ComparisonDecreasingbetweenamplitudethevoferticalthevvelocityerticalvandelocitythe.spatialInitialtrajectoryconditionsat
ofthesystemareθd=Ω+.+Φ,Δe=Φ.Ω),ν=Φ.Φ´´.FallinginitialheightVd=ΩΩ1in
gime.reallingsteady-fthe
oblateSteady-falling4.2ellipsoid
Whentheellipsoidbeginstofall,theverticalvelocityischaracterizedbyadampedwaver-
ing(transientoscillation)intimeresemblingthebehaviorofadampedoscillator(Gold-
steinet.al.(2002)).Ataverylongtime,theverticalcomponentofvelocitybecomes
ellipsoidconstant.Theapproachesamplitudetheofbottomthevoferticalthecontainercomponentfig.ofv4.3.elocityThevdecreaseserticalastrajectorytheoblatefig.
4.3(right),alsoshowsthedampedwavering.Thiswaveringinthetrajectorycurveis
composedofsuccessiveturningpoints.Eachoneofthem,inturn,correspondstopoints
38
ellipsoidoblateSteady-falling4.4.2
Figure4.4:Euleranglesφ,θandψusedforthedescriptionoftheoblate’sorientational
.viorbeha
wheretherateofchangeintheverticalvelocityiszero.Thisvanishingvalueintherate
ofhorizontalchangeoflinesthevL2,...erticalL5,vwithelocityviserticalevidentvelocityin.figureThere4.3isan(left),byinterestingtherelationintersectionofbetweenthe
Ftheorevnumbererytwofoturningsuccessivepointsturninginthepointstrajectoryintheandvtheerticalverticaltrajectoryvelocitythere(seearefig.four4.3,turningleft).
pointsintheverticalvelocity.Ifacharacteristiclengthisassociatedwiththevertical
trajectory,thenthecharacteristiclengthcorrespondingtotheverticalvelocityisreduced.
Theandinhorizontalgeneraltheyhacomponentsvereofgularthevoscillationselocityfollo(seewfig.a4.3,similarbottom).behaviorastheverticalones
Theoblate’sorientationisdescribedthroughthethreerotationaldegreesoffreedom,
calledtheEulerangles,fig.4.4.Wepresentthetimeevolutionoftheanglebetween
theoblate’snormalandtheverticaldirection.Thiswecalltheverticalorientation,fig.
4.5(top).Θ=Φimpliesthattheoblate’sprincipalaxiswillbeparalleltothecontainer’s
bottomfig.4.5(bottom).Atthebeginningofthemovement,thereisalargeangular
changeoftheoblate’snormalwiththevertical,ΔΘfig.4.5(bottom),whichischarac-
terizedbyalargepeak-to-peakamplitudeΘe−e.infig.4.5weillustratethedefinitionof
thepeak-to-peakamplitudeasthedistancebetweensuccessiveturningpoints,whichde-
creasesastheoblatesinks.Inthesteady-fallingregime,boththepeak-to-peakamplitude,
Θe−eandthechangeΔΘ=ΘM−ΘT,decaysastheoblateapproachesthebottomofthe
container.Theoblatetendstoalignitsmajoraxisalongthevertical(Huanget.al.(1998))
havingaverylowresistancetoitsdescentinthefluidacquiringtheterminalvelocityfig.
(top).4.3
Phenomenology
Angular VariationChange of Vertical Orientation8590θiChange vertical orientation Θ(t)
80Terminal Orientationθ75Θ756070Δθ=θf−θiθft
Vertical Orientation 30Position in Y60Θ=0
45Θ65First peak−to−peak amplitude p−p
60Decreasing peak−to−peak amplitude15550051015Time t(t20)2530354050−5051015202530
sPosition in X
39
Figure4.5:(left)Decreasingpeak-to-peakamplitudeintheangularoscillation.(right)
AngularchangeΔΘalongasegmentoftheverticaltrajectory.Initialconditionsofthe
systemθd=Ω+.+Φ,Δe=Φ.Ω),ν=Φ.Φ´´andVd=ΩΩ1Pb.
Vertical Orientation & time100150II)27090110240807021070Vertical velocity & time306018026101418
4.1150503.3(I)2.512040III)1.790304812162024
24681012141618261014
Figure4.6:InitialconditionsVd=Ω´Φ,Ak×Az=Ω)×Ω),Δe=Φ.Ψ´´,ES=(´).
InitialorientationΘΦ=+´d.I)VerticaltrajectoryII)Theverticalvelocity.III)The
orientation.erticalvellipsoidoblateOscillatory4.3
Inthedynamicalvoscillatoryariables.phase,Wetheobserveellipsoidsuchisabehacharacterizedviorinourbyaresimulationsgularatoscillationsmallinkinematicallthe
40
°Θ=00540Θ0=(10−2)°
360Position in Y
180
15
12
Position in Z
Position in Z9
ellipsoidoblateChaotic4.4.4
°=0Θ0Θ0=(10−2)°
01.56.511.516.561113151719
Position in XPosition in X
Figure4.7:Theleftpicturesho−)wsthechangeintheverticaltrajectorywhentheinitial
orientationchangesΔΘΦ=ΨΦ.Therightpictureshowsthehorizontalcomponents.
TheinitialconditionsVd=+(Φ,Ak×Az=Ω)×Ω),Δe=Φ.(´,ES=ΩΩ).
viscosityandsmallaspect-ratios.Infig.4.6weshowtheellipsoid’sverticaltrajectory,
velocityandorientation.ThisoscillatoryphasehasbeenstudiedexperimentallybyBel-
monteet.al.(1998).Thisphasehasadistinctivecharacterthattheperiodofoscillation
oftheverticalvelocityishalftheperiodofoscillationoftheverticalorientation.Oursim-
ulationagreesverywellwiththeexperimentwhichwillbediscussedinthefourthsection
4.chapterof
Chaotic4.4ellipsoidoblate
inWefig.observ4.7.eThechaoticfigshobehawsviortheforvprominentariationschangeintheinthevellipsoid’erticalsandinitialhorizontalorientationastrajectoriesshown
astheinitialorientationchangesbytheorderofΨΦ−).Inoursimulationsthechaotic
isphaseimportanthasbeentopointfoundoutforthatlargethesensitiaspect-ratiosvitytoeq.small3.28vandariationsforinalltheReinitialynoldsconditionsnumbers.ofIt
fallingbodies(inourcasetheellipsoidalorientationΘd)hasnotbeenreportedneitherby
simulations,theorynorbyexperimentsuntilnow.
4.5ComparisonwithMahadevan´smodel
Ashadevanmentionedet.al.in(1995)chapterandΨ,thereMahadearevanseveral(1996))modelsthatha(TveanabegivenandgoodKanekinsightotothe(1994,95),Ma-prob-
Phenomenology
−5
−15Vertical position−25
Vertical trajectory
−5
−20Vertical position−35−50
−0.80.1Horizontal position11.9−1.2
Vertical trajectory
2.41.20Horizontal position
41
Figure4.8:Steady-fallinginitialconditionsΔed=β=Φ.Ω),α=Φ.Ω2,ν(=Φ.Ψ,ν)=
ΦΦ..+Ω),ν,0α==ΦΦ..0,Ω2ν,TνT==Φ.ΦΦ.,λΦ´´,=νTΦ.=ΦΦ+Φ.,Φ,Θλd==+∗Ω+.+ΨΦ.−7F,orΘdthe=2Φd.oscillatoryThesolidregime:andΔdottede=βlines=
showMahadevan’sandourresults,respectively.
lem.WeuseasimplifiedmodelformulatedbyMahadevan(1996)thatoffersagood
absencequalitativofequantitaticomparisonvetoouragreementsimulationshastobeintheunderstoodoscillatoryintermsandofsteady-fthedifallingferencephase.betweenThe
itethetwsizedocmodels.ylinder,whereMahedevtheancylinderdescribesaxistheismotionassumedofatofbeallingstripperpendicularofpapertotheinvanertical.infin-
Thefield.systemTheisviscosityassumedistaktoenbeintobidimensionalaccountinwithtermsanoftheincompressiblegeneralizedfluidRayleighinagradissipationvitational
appliedfunction.alsoThisbywLamborkisa(1932),continuationwhosetheofthecentralmethodapproachusedbyKconsistedelvininandignoringKirchhofthefvandor-
ticesandassumingthatthefluidhaszeroviscosity.Thenewequationsbecomecomplex
sincethereareΩΦnewly’addedmass’terms(Lamb(1932),Mahadevan(1996)).Inour
case,wehaveathreedimensionalmodelwithboundariesasexplainedinchapterΩ.
teThegratorequationsandweofusemotiontheinitialforthisconditionsmodelareforsolvwhichedbysteady-fusingallingRunge-Kanduttaoscillatoryfourthreordergimesin-
areobserved,fig.4.1.Theresultsareshowninfig.4.8.
ortexV4.6
Thevortexproductionisanimportantpartofthefluiddynamicsthatmustbetakeninto
accountintheformulationofatheoryforfallingbodies.Willmarthet.al.(1964)made
apioneeringworkwheredye-laddendisksweredroppedintowaterandvorticeswere
42
OutlookandConclusions4.4.7
Figure4.9:Therightpictureshowsthevortexstructureoftheverticalandhorizontal
componentsofthefluidvelocityfieldΣh,i)generatedbythefallingoblatewithadiameter
3.2inacontainerofΩΦΦ×´Φ×´ΦandReynoldsnumber,ES=ΨΩ1,aspect-ratio,
Δe=Φ.).TheleftpictureshowssheddingvorticesreportedbyBelmonteet.al.,ref.[12],
strip.allingfafor
clearlyobserved.Inoursimulationsthefallingellipsoidgeneratessheddingvorticesin
thefluidalongitstrajectoryasshowninfigure4.9(right).Itshowsthefluidvelocityfield
aroundtheoblateandthevortexislocalizedjustintheregionabovetheoblateandwhere
itexperiencesalargeangularchange,ΔΘasshowninfig.4.5(top).TheReynolds
numbercalculatedfromtheoblate’sdiameterandterminalvelocity,ES=ΨΩ1.Wepoint
outthatthevortexisobtainedalsointheworkbyBelmonteetal(Belmonteet.al.(1998))
whereasheddingvortexiscreatedbythezigzagmotionofthefallingstripasshownin
4.9.figureoflefttheAsystematicstudyoftheboundarylayeroftheellipsoidisnotpresentedinthethesisand
itwillremainasafuturework.
Conclusions4.7Outlookand
Thetainerhasmotionbeenofastudied.singleWoblateefoundellipsoidthreebasicsettlingreingimesafluidforintheathreedynamicsofdimensionalthesystemcon-
(steady-falling,oscillatory,andchaotic).Wefoundthatourresultsareingoodqualitative
agreementwiththesimplifiedmodelproposedby(Mahadevan(1996)).Thesameinitial
conditionshavebeenusedinourworkinthestudyofoscillatoryandstead-fallingre-
gimes.Moreworkhastoberealizedinfutureinordertounderstandtheroleofthefluid
pressureandvelocityfieldsbetter.
5Chapter
Phases
Inthischapterweinvestigatethedynamicsofthephasesintroducedintheprevious
chapter.Weexploreeachphasebychangingdifferentparametersinthesystem.We
introducesomeimportantconceptsanddefinitionswhichwewilluseinthenextchapter.
Inthefirstsection,wediscussthesteadyfallingphasewhentheinitialheightofthefall,
aspectratiooftheellipsoidandthekinematicviscosityarechanged.Next,wedepictthe
oscillatoryphase.Furthermore,westudytheeffectonthedynamicsduetochangesinthe
initialorientationoftheellipsoid.AcomparisonwiththeexperimentsbyBelmonteet.
al.(1998)hasbeenmadeandoursimulationsagreequitewellwiththeexperiments.Fi-
nally,wepresentthechaoticregime,whichishighlysensitivetothechangeintheinitial
orientationoftheellipsoid,asshownintheLyapunovexponent.
Steady-F5.1Phase.alling
5.1.1Changeintheinitialfallingheight.
Figure5.1(I),showsthetrajectoriesfordifferentinitialfallingheightsbyfixingallother
parameters.Itisevidentfromthefigurethatthereisnochangeinthepeak-to-peakamp-
litude.Foralltheheights,thetrajectoriesbehavelikethatofadampedoscillator.
Infig.5.1(II),weseethattheellipsoidapproachesthesameterminalvelocityindependent
ofzerotheasftheallingoblateheight,touchesatthethesamebottomtime.oftheAlso,thecontainerverticalwhichviselocityindependentsharplyofconvtheerfgesallingto
height.
inFiguretheinitial5.1(III)fshoallingwstheheight.vFerticaloralltheorientationaltrajectoriesbehaviourshownofinthefig.ellipsoid5.1(I),withwetheseeinchangefig.
5.1which(III)isthatseenthebytheorientationsemi-majoroftheaxisellipsoidgettingoffersalignedwithminimumgravity.resistanceagainstthefluid,
43
)hgΣgreplacementsPSfrag04allingSteady-F5.5.1Phase.
1
0.75(c)0.5Vertical velocity0.25(II)(c)(b)(a)
(I)(b)
(a)
75Vertical position5025
100
44
Inthissection,westudythedynamicsofthesteady-fallingellipsoidasthekinematicvis-
θΦcosity=isΩ+.+d.changed.ItglidesThedoellipsoidwnwardsstartsanditstotheswingingsidemotionacquiringwithasomegivenamplitude,initialwhileorientation,the
kinematicviscosityνacts,thereby,reducingthesubsequentamplitudesofoscillationas
5.2(I).fig.inwnshoFig.orientation5.2(I,ofII,theIII)shoellipsoidwthefordiftrajectoryferent,verticalkinematicandviscosities,horizontalvrespectielocitiesvely.andCurvtheevNerticalwith
5.1.2Dependenceonthekinematicviscosity.
ΦTFigurerajectory5.1:hasInitialdifferentconditionsinitialofheighttheΣN)system.Vd=θd2+,=ΣO)Ω+V.d+,=Δ0+e,=ΣP)ΦV.dΩ)=,ν)+.=I)Φ.TheΦ´´.spatialEach
trajectoryintheverticalplane.II)Verticalvelocityvs.time.III)Verticalorientationvs.
time.
PSfragreplacements005101520253035
gΣgh)Time t(ts)
0replacementsPSfrag68Horizontal position1012gΣgh)051015Time t(t20)253035
s(a)100θ(c)(b)75Vertical Orientation 50(III)25
(.Φ−(.Φ0.Φ5.Φ7.Φ9.Φ)hgΣgreplacementsPSfrag (a)←Vertical Orientation Vertical Orientation vs. Time120110100908070605040302035302520151050(.Φ−(.Φ0.Φ5.Φ7.Φ9.Φ)hgΣgreplacementsPSfragVelocities Vx,Vy(a)(b)Velocity & Time(II)(c)Vy2520151050(.Φ−(.Φ0.Φ5.Φ7.Φ9.Φ)hgΣgreplacementsPSfrag(I)(c)(b)(a)Vertical PositionHorizontal PositionOblate Vertical Trajectory90807060504030201001614121086445
ν=Φ.ΦΩ),curveOwithν=Φ.Φ´´andcurvePwithν=Φ.Ψ.Weobservefromallthe
threeplotsthatasviscosityincreases,theattenuationbecomesstrongertherebybehaving
likeadampedharmonicoscillator.
Theattenuationintheamplitudeoftheverticalvelocitywithtimeandthetimeperiod
betweentwoconsecutiveturningpointsarenotverydifferentfromeachotherasthe
viscositychanges.Also,weseethatboththehorizontalandverticalvelocitiesconverge
tothesamevalue(eg.ik≈Φandil≈Φ.+)forallthevaluesofviscosity.
Thisstrongattenuationforlargeviscosityishighinthehorizontalcomponentofthe
ΦFiguretrajectory5.2:hasaInitialdifferentconditionskinematicintheviscositysystem.ΣθN)dν==ΦΩ+..+ΦΩ),,VΣdO)ν==1ΦΦ,.ΔΦ´´e,=ΣP)νΦ.Ω)=.Φ.EachΨΦΦ.
(I)(bottom)Projectionvelocitiesofthevs.time.trajectory(III)inVtheerticalverticalorientationplane.vs.(II)timeV.ertical(top)andhorizontal
Phases
← (b) (c)←(III)
Vx
46
2
1.8)oln(A/A1.6
Characteristic time & viscosity
1.4sν/ν0.71.40120145170195
T/ts1494)Time(ts
allingSteady-F5.5.1Phase.
(1)(2)(3)(4)(5)
2419
Figure5.3:Initialconditionsofthesystem.θd=Ω+.+Φ,Vd=ΩΩΦ,Δe=Φ.Ψ).Inthe
figureeachlineshowsthedecreasinglogarithmicamplitudeofoscillationagainsttime
fordifferentvaluesofkinematicviscosityν(=Φ.Φ(,ν)=Φ.Φ0,ν0=Φ.Φ1,ν1=Φ.Ω
andν5=Φ.).Intheinsetweplotthecharacteristictimeτofeachlinevsthekinematic
.viscosity
velocityasseeninthefigure.Thiscanbeexplainedbythefactthattheinteractionbetween
thewallsandtheoblateislesswhenthefluidislessviscousBrenner(1961).Thisisalso
trueforlargeangularvariationsΔΘinfig.5.2(II)cforsmallvaluesofviscosity.
Infig.5.2(III)weseetheorientationalbehaviourastheviscositychanges.Thefirstpeak-
to-peakamplitudesarenearlythesameforallviscosities.Forν=Φ.ΦΩ)thesubsequent
peak-to-peakamplitudesapproachaconstantvalueofΘe−e∼Ψ)dwhileforhighervis-
cosities,theoscillationsgetdampedandtheellipsoidreachesaconstantorientation.We
alsoobservethatthefinalorientationoftheellipsoidgetsalignedwithgravity.
Figure5.3explainsthattheamplitudeofoscillationdecaysexponentiallywithtimewhich
isrevealedbytheloglinearplot.Thedimensionlesscharacteristictime,τdecayslinearly
withthedimensionlesskinematicviscosity,νasshownintheinsetofisfigure5.3.The
solidlineintheinsetshowsalinearfitwithνsequation,iτs=−Φ.Φ´νν0+).).Thefigure
clearlyshowsthatviscosityplaystheroleasadampingfactorthatdeterminesthedecay
rateoftheverticalvelocityandposition.
Phases
100
8060Vertical Position402003
Increment in the Aspect−Ratio1
Vertical Velocity vs. Time
(a)0.75(b)(c)Vertical Velocity Vy0.5(c)II)I)(b)0.25(a)ΔΔΔ r=0.18 r=0.22 r=0.28
579005101520
)Time t(tHorizontal PositionsVertical Orientation vs. Time140 (c)←
100θAngle 60
(a) ↑ (b)↑
III)2008Time t(t16)24
s
47
Figure5.4:Initialconditionsofthesystem.Θd=Ω+.+Φ,Vd=2+,Ak×Al×Az=
ΣOΨΦ)Δ×e=ΨΦΦΦ×,ΩΩ,ΨΦ,ΣνP)Δ=eΦ=.Φ´´Φ,.Ψ1.EachI)Trajectorytrajectoryforhasthedifvferenterticalplane.aspect-ratioII)VΣN)Δerticalev=Φ,elocityΩ2,
vs.time.III)Verticalorientationvs.time.
5.1.3Changeintheellipsoidaspect-ratio.
Whentheellipsoidbeginstofall,itgainsalargeamplitudeofoscillation.Thetrajectory
ΣP),plottedinthefigure5.4I,isforanellipsoidwithaspectratio,Δe=0.18.Weseean
oscillatorytrajectorycharacterizedbyaconstantpeak-to-peakamplitudeof3.Asthe
behaaspectvior.ratioIfistheaspectincreasedratiotois0.22,furtheri.e.,increased,trajectorytheΣO)intrajectorythefigure,showsshoirrewsgularasteadyoscillations.falling
Atthebeginningofthefall,theellipsoidwithlargeaspectratio(trajectoryN),showsa
rapiddampingamplitudeinthefirsthalfofthetrajectorybutinthesecondhalf,doesn’t
48
P5.5.2Phase.eriodic
showanysteadyfallingbehavior,insteadchangesabruptlyintoanon-stationarystate.
Inaspectfigureratio,5.4(I),Δeforallincreasestrajectories,from0.18thetofirst0.29.amplitude,ψΦdecreasesfrom3.0to1.8asthe
As(minortheaxisofaspect-ratio,theΔoblateeisisfixedincreasedinourfrom0.18simulations)to0.29,therebytheprooblate’svidingarealessbecomesresistancesmallto
thefluid.Therefore,thefinalverticalvelocitydecreasesastheaspect-ratioisincreased,
fig.5.4II.Alsoastheaspect-ratioisincreasedthepeak-to-peakamplitudeofthevertical
decreases.elocityvTheratiodecreasespeak-to-peakortheamplitudeoblate’sforareathevincreases.erticalFororientationΔe=ΘΦ.e−Ω2etheincreasespeak-to-peakwhentheamplitudeaspect-
ddisforΘeΔ−ee==ΦΨ).Ψ1,.fig.Inall5.4cases(IIIa),theandoblatemuchatthesmallerendcomparedorientsvtoΘerticallye−e=fig.0Φ,5.4fig.(III).5.4As(IIIc),the
whichellipsoidwillbeaspectratio,discussedΔeindetailincreases,inthechaptersystem).transitsfromregulartoirregulardynamics
Phase.eriodicP5.2
Wesmallerfindperiodicaspect-ratiobeha(Δevior=forΦ.Ψ´´smaller).Thekinematicdynamicsofviscositythef(ν)alling=Φ.ΦΩ)ellipsoid→EisSgo=v(1Φerned)andby
inertialeffects.Infigure5.5(I),weshowthetransitionfromaquasi-periodic,oralong
steady-fallingtrajectory(ν(=Φ.ΨΦΦ),toaperiodicbehaviorfig.5.5(I,ν)=Φ.ΦΩ)),when
thekinematicviscosityisvariedfromν(=Φ.Ψtoν)=Φ.ΦΩ).Thetrajectorypresented
infig.5.5I,withkinematicviscosityν)=Φ.ΦΩ)hasawavelengthof20.
Theverticalvelocityshowninfig.5.5(II),hasthesametransitionfromalongsteady-
fhasallingareoscillationgimewithperiodafinalofa´v.´.eragevelocityof´.Φtotheperiodicregimewherethevelocity
Theverticalorientationshowninfig.5.5(III)hasalsothesametransitionfromalong
oscillatesteady-fallingaroundreΘgime=to2Φdperiodicwithangularbehaviorwithpeak-to-peakaperiodofamplitude6.6s,Θand=the+Φd.angularvalues
e−eΦtheThesystemdecreasingfrominthesteady-fkinematicallingtoviscosityoscillatory,foraphase.muchWesmallerwillinvestigaspect-ratioateΔthiseσΦ.transitionΨ,takines
.)chapter
5.2.1Changeintheinitialorientation
Inthissection,weinvestigatetheperiodicphasewithdifferentinitialorientations.The
correspondingtrajectoriesareshowninfig.5.6(I)forΘΦ=Ω+dandforΘΦ=2Φd
andthepeak-to-peakamplitudesare2.3and0.4,respectivelyandshowanoscillatory
=0.100ν=0.025νVertical OrientationVertical Orientation & Time1301109070)hgΣgreplacementsPSfrag−132241680)hgΣgreplacementsPSfragHorizontal Position25141185249
behavior.Thepeak-to-peakamplitudeoftheoscillationinthetrajectoryverticalvelocity
andorientationfig.5.6(I,II,III)decreasesastheinitialangleoforientationincreases.
Thefinalverticalvelocityandorientationforallthethreeinitialorientationsisonan
averageΦ.+and1)d,respectively.Thismeansthattheaveragelimitingvaluesofthe
verticalvelocityandorientationarenotaffectedbythevariationoftheinitialorientation
.ΘdWeobservealargepeak-to-peakamplitudeofoscillationintheverticalvelocityandver-
ticalorientation,equaltoΨ.Φand0Φd,respectively,withaninitialorientation,ΘΦ=Ω+d
anditreducesastheoblate’sinitialorientation,ΘΦtendsto2Φd.
Figure5.5:Trajectoriesgeneratedforν(=Φ.ΨΦΦ,ν)=Φ.ΦΩ).(I)Trajectoryinvertical
andhorizontalposition.(II)VerticalorientationΘvstime.(III)Verticalvelocityilvs
time.TheinitialconditionsareVd=2+,Δe=Φ.Ψ´´,θΦ=+´.(d.
40
Phases
III)PSfragreplacements500816243240
Σg)gh
Vertical Velocity & Time4=0.025ν3=0.100ν=0.025ν2Vertical Velocity10II)
Oblate Trajectory10085=0.100ν70Vertical Position5540I)
50
o26o63o90
Inthissection,wecompareourresultswithBelmonte’sresults.Figure5.7(a)(simulation)
showsthetimedependenceoftheverticalorientationwithν)=Φ.ΦΩ)andthevalueof
thepeak-to-peakamplitudeisΘd=+Φd.
Theverticalvelocityasshowninfig.5.7(b)(simulation)reachesitsmaximumvalue´.+
asΘapproachesΘbkthereby,showingaminimumdrag.Theminimumverticalvelocity
il=Ω.)isachievedatΘbTc∼0Φd.
Thebutterflyshapedcurve(fig.5.7(b))wasalsomeasuredintheexperimentalworkby
Belmonteet.al.(1998)inwhichtheverticalorientationΘoscillateswithtwicetheperiod
5.2.2ComparisonwithBelmonte’sresults.
15
Figure5.6:I)Trajectoriesforthreeinitialorientations.(a)ΘΦ=Ω+d(b)ΘΦ=+´d(c)
ΘΦ=2Φd.II)Thecorrespondingverticalvelocities.III)Theverticalorientations.Initial
conditionsVd=ΨΦΦ,Ak×Az=ΨΦ×ΨΦ,Δe=Φ.Ψ´´,ES=(´).
c)
Phase.eriodicP5.5.2
Vertical Velocity & Time
0.890c)b)a)0.660Vertical VelocityVertical Position0.4II)300.2I)00replacementsPSfrag2Horizontal Position11gΣgh)05Time t(t10)
s Vertical Orientation & Time140a)120100c)Vertical Orientation8060b)40III)replacementsPSfrag20051015gΣ20gh)25303540
Oblate Trajectory1
)hgΣgreplacementsPSfrag
51Phases80130120601104010020900(Degrees)Θ80 [degrees]Θ−20
70)θ−40a)60−60a)50024681012141618−8000.20.40.60.8
T(s)t[sec]7043.8603.6503.43.240Vy[cm/s]Vy(cm/s)3302.82.6202.4b)b)102.2250607080Θ90(Degrees)1001101201300−80−60−40−20Θ0 [degrees]20406080
601.550140300.520100Vx[cm/s]Vx(cm/s)0−0.5−10−20−1−30−40−1.5c)c)−50−25060708090100110120130−60−80−60−40−20020406080
[degrees]Θ(Degrees)ΘFigure5.7:ComparisonwiththeresultsofBelmonteetal.ref[12]forafallingstripin
theperiodicregime,forthe(a)VerticalorientationΘvstime.(b)Verticalvelocityilvs
Θ.(c)HorizontalvelocityikvsΘ.TheinitialconditionsareVd=2+,Δe=Φ.Ψ´´,
ν(=Φ.ΦΩ),θΦ=+´.(d.
52
Oblate Trajectory
egime.rChaotic5.5.3
105907560Position in Y→45c) →30a) b)←15044.555.566.577.5
Position in XFigure5.8:InitialconditionsVd=2+,Δe=Φ.Ω),ν=Φ.Φ´´andtinyvariationsofthe
initialorientationΣN)θΦ=Ω+.+d,ΣO)θd=Ω+.+ΦΦΨd,ΣP)θd=Ω+.+ΦΦΦΦΦΨd.
.ioflThehorizontalvelocityoscillatesaroundzerowithconstantperiodofoscillationandits
maximumvalueik,bk=Ψ.)andtheminimumik,bTc=−Ψ.)atΘ∼2Φdasseenin
fig.5.7(c).Whenthehorizontalvelocityiszerotheoblatetakesitsmaximum(ΨΩΦd)and
minimum(+Φd)valuesinΘwithanon-zeroverticalvelocityil=´.Ω.
egime.rChaotic5.3
5.3.1Sensitivitytothechangeintheinitialorientation
Wenowdiscusssthesensitivityofthedynamicstotinychangesintheinitialorientation.
Wehavesimulatedthreetrajectoriesshowninfig.(.1,whichhaveslightlydifferent
initialorientation.Atinyvariationintherelativeorientation(Δθd=ΨΦ−0)producesa
significantvariationintheshapeofallthecurves.Thesechangesareappreciatedinthe
lowerpartofthetrajectories.
Inordertogetabetterpictureofsensitivity,wehaveincrementedthefallheightVdto166.
Theresultingfourtrajectoriesforfourslightlydifferentinitialorientationsinthevertical
planeareplottedinfig.(.2andweobservehighsensitivityto−0theinitialorientation.For
thefourtrajectoriestherelativeangularvariationisΔθd=ΨΦ.
Phases
150
Trajectory Sensitivity to the Initial Orientation
125100b)a)Position in Y7550
25
d)c)
53
02468101214161820
Position in XFigure5.9:InitialconditionsVd=Ψ++,Δe=Φ.Ω),ν=Φ.Φ´´andtinyvariationsofthe
initialorientationΣN)θΦ=().´1(d,ΣO)θd=().Φ´´d,ΣP)θd=((.21Ψd,ΣR)θd=((.20+d.
5.3.2Powerspectra,autocorrelation,Poincaresection.
Duetothesensitivitytosmallchangesintheinitialorientation,weproceedtoanalysethe
systembytheFourierpowerspectrumtimeseriesofthehorizontalcoordinatekΣg),kΣg+
δg),kΣg+Ω∗δg),...andinourcaseδg=Φ.Φ)´)++.Abroadspectrumoffrecuencies
appearsasshowninfig.5.10IIthereby,indicatingachaoticmotion.
Theautocorrelationfunction,forthesametimeseries(fig.5.10I),doesnotfallquicklyto
zeroratherdecreaseslinearlywithtimeandthepointsarenotindependentofeachother.
Inthefigure5.10III,wepresentslicesorPoincare´sectionsΣpk,k),correspondingtothe
trajectoriesinfig.(.2awhicharequiteirregular.Theorbitsarequasi-periodicinthe
notsenseclosedthattheandyarepassnotrepeatedlyassociatedandwithirreagularlyparticularthroughtimetheperiod.wholeThedomain.sensitiThevitytoorbitsinitialare
conditionsisclearinthesefourfigures.Asmallchangeintheinitialorientationresultsin
largechangesinpositionandvelocity.
5.3.3Lyapunovnumber.
Wenowinvestigatequantitatively,thissensitivitybystudyingtheincrementintheEuc-
(.2lidean(a)anddistance,(c).Re1Figuree2=(.ΨΨ,Σk(sho−wsk)))that+theΣl(−ldistance)))betweenbetweenthenearbycurvespointspresentedhasaninovfig.er-
allexponentialtimedependenceRΣg)∼expΣλg)andthefitgivesanestimateforthe
54
OutlookandConclusions5.5.4
Power Spectra Z10^2
10^1P−S
10^0
II)
Power Spectra ZAutocorrelation Function10^210.90.80.7II)10^10.6P−SAutocorr0.50.4I)0.310^00.20.10238028803380i38804380488010^110^2i10^310^4
Phase Space10.8III) θ0=45,033o
0.60.40.2Velocity component Vz0−0.2−0.4−0.61.522.533.544.555.56
Position in Z
Figure5.10:Detectionofchaos.I)AutocorrelationfunctionforthetimeseriesofkΣg)
forthetrajectoryoffig.14a.II)PowerSpectraoffig.14aIII)PoincaresectionΣpk,k)for
14a.fig.oftrajectorythe
Lyapunovexponentλ=Φ.Φ)Ω±Φ.ΦΦ).ThepositiveLyapunovexponentgivesaclear
Chaos.ofindication
Conclusions5.4Outlookand
Wehaveoscillatory(periodic),observedthreeandphaseschaoticofrethegimes.Thedynamicssteady-foftheallingsystemandthenamely,periodicsteady-fregimealling,ex-
hibitBelmonteasimilaret.al.ph(1998).ysicalWbehaehaviorveasobservcharacterizededfortheflatteneddynamicsbodiesofthebyFieldsteady-fet.allingal.re(1997),gime
whenthekinematicviscosity,droppingheight,andoblate’saspect-ratioarechanged.
Someconclusionscanbedrawnfromthispartofthework.
(a)ThespatialtrajectoriesΣk,l)arecomposedofoscillationsthatcorrespondtoadamped
Phases
1
0.5
0ln(dist)−0.5−1
−1.5
Increment of the Distance in Time
55
PSfragreplacements−201020304050607080
)gΣghFigure5.11:Increasinglogarithmicbehaviorfortheseparationdistancebetweenthe
trajectoriesΣN)andΣP)infig.14,thatslightlydifferintheinitialorientationangleby
ΔΘ=Φ.(Φ´d.
harmonicmotion.ThisregimeispresentforsmallvaluesofI≈Φ.)−Ψ,ES≈ΨΦΦ
andisshowninfig.5.1-5.4Thereisnovariationinthetrajectorieswhenweincreasethe
initialheight.Theviscosity,foraconstantsmallaspect-ratio,determinesthedecayofthe
positionandthevelocityoftheellipsoidasshowninfig.5.2.Whentheaspect-ratiois
changed,thetrajectoriesvarysignificantly(fig.5.4).
(b)Thefinalverticalvelocity,ildoesnotdependontheinitialfallingheightandthe
.viscositykinematic(c)Theverticalorientation,Θoftheellipsoid,undergoesarotationalmotionuntillits
majoraxisgetsalignedwithgravity.Thistendencyofexhibitingminimumresistance
againstthefluidexistsforallReynoldsnumbersintherangeES≈Ψ−)ΦΦ.
TheperiodicbehaviorinoursimulationsisfoundforES∼(ΦΦandsmallaspectratios
ΣΔe≤Φ.Ψ).Theverticalorientation,Θoscillateswithtwicetheperiodofoscillation
oftheverticalvelocityilandatthesameperiodofthehorizontalvelocityik.This
periodicmotionhasalsobeenobservedby(Belmonteet.al.1998)andthisshowsthat
oursimulationsareessentiallycorrect.Inthisregimetheinitialorientationdetermines
thevalueoftheamplitudeofoscillationinthespatialtrajectoryΣk,l),velocityiland
orientationΘ,andplaysthesameroleasthephaseangleintheoscillatorymotion.For
Θd=2Φd,theamplitudesoftheabovequantitiesapproachasmallvalue.
Thechaoticbehaviorispresentforlargeraspect-ratios(Δe≥Φ.´)andintheentirerange
ofReynoldsnumbersusedinthesimulation.Theseparationbetweenthespatialtraject-
oriesofthefallingoblateellipsoiddivergesforsmallvariationsintheinitialorientation
56
Θ
λ
d
,=
andwsgroΦ)Ω.Φ±
xponentiallye.ΦΦ).Φ
intime.Thealuev5.5.4
foundforConclusions
theyapunoLand
veOutlook
xponentis
6Chapter
lawSimilaritytransitionsphaseand
Inphasethetwandothevprecedingariationinchapterseachwephasehavewithseenrespectthetothecharacteristicphysicalparameters.phenomenologyInoftheeachfirst
sectionofthischapter,wediscussthesimilaritylawthatdescribesintrinsicallythedy-
namicsofthesteady-fallingandoscillatoryregime.Aphasediagramhasbeencompared
totheresultsofFieldet.al.(1997).Furthermore,wepresentanovelmechanismthatex-
plainsthetransitionfromtheoscillatorytothesteady-fallingphaseandthentothechaotic
phase.
6.1Steady-FallingOblateEllipsoid:Similaritylaw.
Itiswellknownforlargevelocitiesthattheinertialdragisgivenby,
>C=,ρMK)F
(6.1)
where,istheformfactoroftheinertialdrag,Fisthecross-sectionalareaoftheoblate
ellipsoid,ρMthefluiddensityandKtheellipsoidvelocity.Theweightoftheoblate
toproportionalisellipsoid
>T≈ρEaEa)MEbU(6.2)
withρEaabeingtheellipsoidaldensity,EMandEbbeingtheminorandmajorradius,
respectively.Theterminaldownwardvelocityisdeterminedbytheequilibriumbetween
thesetwoforcesandsincebothdensitiesarefixed,theterminaldownwardvelocityis
,byenvgi
>T=>C=⇒K∼UEb
57
(6.3)
58
654Vertical velocity vy32
1
6.6.1Steady-FallingOblateEllipsoid:Similaritylaw.
System L"System L
018141022)Time t(ts
654Vertical velocity vy32
1
System L"System L
05791113
)Time t(ts
ΦFigurekinematic6.1:viscosityInitialν=conditionsΦ.Ψ.Ininthethefiguresystem.(left)θdwe=plotΩ+.the+,vVdertical=v1+,elocityΔe=agΦ.ainstΨ)timeand
inapplyingboththesystemsinvAerse(solidline)transformationandAof(dottedtableΨ.line),andthesuperposition(right)performed
Wesupposethatthecharacteristicperiodofoscillationdependsonthelateraldimension
whichinoursimulationsisASdgΣ=Ω))andindependentoftheverticaldimension(falling
height).Therefore,weassumethattheperiodofoscillationshouldchangeas,
G∗∼ASdg(6.4)
KThedynamicsofthesystem,ingeneral,dependsontheReynoldsandtheFroudenumbers
(Sec.Ω.Ψ.Ω,Belmonteet.al.(1998)).WecanrescaletheparametersofasystemofsizeA
toasystemofsizeAthrough
SystemA→SystemA
ASdg→c∗ASdg
EM→c∗EM
Eb→c∗Eb
U→1∗Rc
Table1.Transformationsrules.
transitionsphaseandlawSimilarity
59
ThetransformationspresentedintableΨkeeptheFroudeandReynoldsnumberscon-
stantandthedynamicsinthetwosystemsbecomeequivalentifthevelocitycomponents
changeasintableΩ.Asaconsequenceofthistransformation,thedynamicsinsystemA
undergoesachangeintheellipsoidperiod,theverticalandhorizontalcomponentsofthe
velocity,asshownintableΩ.
ASystemASystem→G∗→c∗G∗
VhorKSdgc→KvEgi→Vvert
c
Table2.PeriodandvelocityapplyingthetransformationrulesinTable1.
Infig.6.1wepresentthesuperpositionoftheverticalvelocitybyapplyinganinverse
transforminAwithn=2.Thethreecurvescoincidequitewellinagreementwiththe
scaling.
6.2Periodicbehavior:Similaritylaw.
Figure6.2showstheverticalvelocityagainsttimeforthethreesystemsA(solidline)
(cand=AΩ),(n=2)andasandinAthe(n=4),caseoftherespectivsteadyely.fWallingeapplyregime,thethetransformationdynamicsforrulestheofsystemstableAΨ,
andA,intheoscillatoryregime,arerelatedbyasimilaritylaw.
Diagram.Phase6.3
∗Inthephasemomentspace,ofweinertiadefineoftheaoblatedimensionlessellipsoidtomomentthatofofitsinertiasphericalIwhichequivisalenttheatratiosameof
Reynoldsnumber.WedoasimilaranalysisforourresultsasdonebyFieldet.al.(1997).
Itisimportanttoremarkthattheexperimentwasforafallingdisk,withsmallaspect-ratio
andweexpectthedynamicsofthesystemtobeclosetothatofanoblateellipsoid.
Thedefinitionsofthedimensionlessvariablesforoursystemare:
I=Id∂aiE=)ebρEaaTe=)ρEaaTeΔe(6.5)
IheSEgE(eMρMajTC(ρMajTC
ES=IΣΩeM)(6.6)
ν∗ReFigureynolds6.3leftnumbers,sho(highwsthekinematicresultsintheviscosity),log-logthescale.motionAtisolovwervalues-dampedofandItheandoblatesmall
60
543Vertical velocity vy21
002.51.50.5Horizontal velocity vy−0.5−1.50
, r g, rMm g/8, 2*rm, 2*rM 5
4Vertical velocity vy321
Diagram.Phase6.6.3
System L|System L||System L
7.51522.5300012345678
Time t(ts)Time t (ts)
System L g, rm, rM System L|
g/8, 2*rm, 2*rM System L||
1.8Horizontal velocity vy−0.2
(d)−2.27.51522.5300246810
Time t(ts)Time t(ts)
ΦFigurekinematic6.2:viscosityInitialν=conditionsΦ.ΦΩ2.inInthefiguresystem.(left)θwed=plotΩ+.the+,vVdertical=v1+,elocityΔeag=Φ.ainstΨ)timeand
forapplyingsystemstheAinv(soliderseline)andtransformationAof(dottedtableline).Ψ.Therightfigureshowsthesuperposition
ellipsoiddropstothebottomofthecontainerwithoutanyoscillationandthisisthebe-
ginningofthesteadyfallingregime.Thisisseeninthelefthandbottomcornerofthe
diagram.WhentheReynoldsnumberisincreasedΣES≥ΨΦ))andI∗isfixed,thetraject-
oryiscomposedofsuccessiveoscillationsthatdecreaseinamplitudeandeventuallythe
oblatereachesthebottomofthecontainer.Thisisthesteadyfallingregime.
ForsmallvaluesofI∼ΔeσΨ,wehaveaflatellipsoid.ForReynoldsnumber,
ES≥(ΦΦ,thetrajectory,velocityandtheorientationarecharacterizedbyoscillations
thatareperiodicintimeandspace.Thisphaseiscalledastheoscillatoryregime.As
weincreaseI,theobjectbecomesaspherethatisslightlyflattenedatthepolesandits
dynamicsbecomessensitivetosmallvariationsintheinitialorientationtherebyexhibiting
.trajectorychaotica
transitionsphaseandlawSimilarity
This work10-1Ref. [14]Ref. [13]Tumbling
110
Chaotic
Steady−Falling
Periodic
61
efghChaoticChaotic
PSfragreplacements10-2bPSfragcdreplacements
∗Ia∗II*100
SteadyPeriodicEFallingI∗10-3I∗Steady−Falling Periodic
Ψ2ΦΨ2Φ
ΨΨΦ3ΦΨΨ3ΦΦ
Ψ102103104Ψ101102103
ΨΦEΨΦRe
et.Figureal.6.3:(1997).TheInlefttherightpictureplotshowewsthepresentphasetherediagramgimesofofftheallingphasedisksspacereportedfortheinfallingField
oblatedimensionlessellipsoidmomentobtainedofininertiaourI∗,andsimulations.theInhorizontalbothaxispictures,ESisthethevReerticalynoldsaxisnumberisthe.
IfwecompareourdiagramwiththeexperimentalresultsobtainedbyFieldet.al.(1997),
fig.6.3leftweseethatinbothpictures,thedistributionofphasesisequivalent.The
differencesinourdiagramwiththatofField’sarethattheyusedisksandnotoblate
ellipsoidsandthetumblingregimeisnotpresentinourresults.Thecoexistenceofthe
dynamicalphasesasexplainedaboveisindependentoftheinitialorientationoftheoblate
ellipsoid.
6.4TransitionfromSteady-fallingtoOscillatoryphase
Infig.6.4weshowthebehaviorofthecharacteristictimeG∗/G(Sec.(.Ψ.Ω),adimen-
sionalizedusingeq.).(,asweincreasetheReynoldsnumberES,thecharacteristictime
goestozeroatESB≈´)),infig.6.3.Beyondthispointwefindtheoscillatoryregime,
thatbehaveslikeasteady-fallingregimewithaninfinitecharacteristictime.
Therefore,wecanconsiderG∗/Gastheorderparameterandthecontrolparameteristhe
Reynoldsnumberforthistransition.Thistransitionislikeasecondorderphasetransition.
Theinsetexhibitsthepower-lawbehaviorwithacriticalexponent≈Φ.).Inthecaseof
theupperpartofthetransition,infig.6.3,thevariationintheoblateellipsoidaspect-ratio
impliesthechangefromsteady-fallingtooscillatoryregime,whichisalsosupportedin
fig.5.4wherethetrajectoriesvaryfromsteady-fallingtooscillatoryastheaspect-ratiois
decreased.
62
0.039
6.6.5TransitionfromSteady-fallingtochaoticphase.
/Ty=0.53*x−6.1*T0.034/T)0.024*ln(T0.009268.5818.58)ln(Re−Rec0.009310210110ReRec
∗TheFigureinset6.4:shoThewstheorderpower-laparameterwbehaGvior/Gvs.withtheanecontrolxponentcloseparametertoΦE.)S,withESB≈´)).
60
45
*30T/T
15
00.180.2Δ r 0.22Δ r0.24
c
Figure6.5:TheorderparameterG/G∗vs.thecontrolparameterΔe,withΔeB≈Φ.ΩΩ.
6.5TransitionfromSteady-fallingtochaoticphase.
Thetransitionfromsteady-fallingtochaoticregimeispresentedinfig6.5.Weusethe
orderparameterG/G∗,i.e.,theinverseoftheoneusedbeforeinordertodescribethe
transition,andthecontrolparameteristheaspect-ratioΔe.AtΔeBafinitejumpinthe
orderparameterisobserved.ThecharacteristictimeG/G∗disappearsduetothenon-
regularoscillationsthatareverysensitivetosmallvariationsintheinitialorientation.
Thistransitionseemstobethereforeoffirstorder.
transitionsphaseandlawSimilarity
Conclusions6.6Outlookand
63
Forthesteady-fallingandoscillatoryregimeweobtainasimilaritylawexpressedintables
ΨandΩ,whichisadirectconsequenceoftheinvarianceoftheReynoldsandFroude
numbers.
Theconstructionofthephasediagramshowsthreewell-defineddynamicregionsas
shobehawnviorbyisFieldassociatedet.al.with(1997).theThetransitiondiftoferencechaosinthethroughaboveintermittencreferenceyiswhichthatisthenotchaoticseen
inoursimulations.Thephasediagramisindependentoftheinitialorientation.
Ouritionfromsimulationssteady-fshowallingthattothechaotictransitionregimefromcanbesteady-funderstoodallingtoasoscillatorysecondandandfirstthetrans-order
phasetransition,respectivelyandthecharacteristictransienttimebeingtheorderpara-
.meter
64
6.6.6
Conclusions
and
Outlook
7Chapter
articlesPMany
Intheprecedingchapterswepresentedthephysicsbehindthefallingofoneoblateel-
lipsoid.Now,inthischapterwearegoingtoexposethedynamicsofmanysedimenting
ellipsoidsinafluidandundertheactionofgravityusingthemodelgiveninchapterΩ,at
smallandmoderateReynoldsnumbers.Westudythesettlingorsedimentingvelocityas
functionofthevolumefraction.Also,weexaminetheverticalandhorizontalfluctuations
oftheellipsoidscomparedtospheres.Additionally,weconsiderthebehaviorofpaircor-
relationfunctionsasafunctionofthevolumefraction.Nextwepresentanorientational
studyusingtheEulerangles,andtheangulardistributionsandtheorientationalbehavior
withvolumefraction.Thesamestudyforthesedimentingvelocityandorientationare
madeastheReynoldsnumberincreases(ES≈0).Furthermore,wepresentthebehavior
oftheorientationalorderparameterwiththevolumefraction.Finally,aconclusionis
en.vgi
Results7.1
7.1.1Sedimentationvelocityforoblateellipsoids
vInolumefig.7.1fractionweshoΦVw,thewithinmeanavrangeerticalof0.01sedimentationto0.21,vforelocityoblateiΣg)asellipsoidsafunctionandofspheresthe
andthencompareittothephenomenologicalRichardson-ZakilawvΦ)=ΣΨ−Φ)c
RichardsonandZaki(1954)withc=).).ThelimitofΦV→Φcorrespondsv0totheVsingle
fallingellipsoidwhichwestudiedinthepreviouschapter.Itisinterestingtopointout
thatsphere,theeq.Ω.sedimentationΩ1,whichvfolloelocitywsofthetheellipsoid,phenomenologicalissmallcomparedRichardson-Zakitothatoflawthe.Thisequivisalentnot
thecaseforfibers(elongatedellipsoids),whereitisfoundthatthesedimentationvelocity
hasamaximumforsmallervolumefractionwhichcanexceedtheterminalvelocityofa
singlefiberKuuselaet.al.(2003).
Foroblateellipsoidsthemeanverticalsedimentationvelocitypassesthroughalocalmax-
imumatΦV≈Φ.Φ).Thismaximumisquiteinterestingsinceitisnotobservedfor
65
66
0.9
(vs)||0.6<v>
0.3
Richardson−ZakiSim. OblatesSim. Spheres
Results7.7.1
00.050.1Φ0.150.2
VandFiguresphere7.1:Mean(dash-dotline),sedimentationasvfunctionelocityofiΣgthe)vforolumetheoblatefractionΦellipsoid.Theoblate(dash-squaredellipsoidline)
Vaspect-ratioisΔe=Φ.Ω),the−)radiusoftheequivalentsphereEEfjT=Φ.20andthe
ReynoldsnumberES=(∗ΨΦ.
spheres.Similarnon-monotonicsedimentationofnon-sphericalbodies(e.g.fibers)has
beenreportedexperimentallybyHerzhaftandGuazzelli(1999)andforprolateellipsoids
insimulationsbyKuuselaet.al.(2001)duetoanorientationparalleltogravity.
Wechoosethedensityofthefluid,theStokesvelocityandthelargerradiusoftheellipsoid
equaltounityinoursystem.Inallcasesthecontainerhasaheight,A=1)andabase
ofΨΦ×ΨΦ,andthelatticeconstant,V=Φ.´.WechangeΦVaddingellipsoidsandthe
maximumnumberofellipsoidsinoursimulationsisoftheorderofseveralthousands.
Theratiobetweenthedensityoftheoblateellipsoidsandthefluidis(.
Infig.7.2wepresenttheparallel()andperpendicular(⊥)componentsofthevelocity
fluctuationswithrespecttogravityasafunctionofthevolumefractionΦVwhichare
as:definedδi)=σi)>−σi>)(7.1)
δi)⊥=σi)⊥>(7.2)
Theangularbracketsindicateaveragingovertheellipsoidsthathavenotreachedthefinal
bottompositionatthecontainer.Theaveragesweremadeoveratleast50realizations
startingwithdifferentrandompositionsandorientations.Infig.7.2thevertical(parallel
togravity)fluctuationsforspheresandforellipsoidsaremuchlargerthantherespective
horizontalcomponents.Thefluctuationsforellipsoidsdecreasewiththevolumefraction.
Foranequivalentsystemofspheres,thefluctuationsshowamaximumatintermediate
volumefractions(ΦV≈Φ.Φ0)(Kalthoffet.al.(1996)andNicolaiet.al.(1995)).In
allcasesthefluctuationsforthespheresareconsiderablylargerthanthefluctuationsfor
ellipsoids.oblate
articlesPMany
0.080.06>2⊥Vδ>,<2||0.04Vδ<0.02
. δδ⊥ Ellip Ellip
|| Sphδ. ⊥ Sphδ ||
67
0.010.060.11ΦV0.160.21
theFigurevertical7.2:V(solidelocityline),andfluctuationshorizontalforellipsoids(dash-dotline)(circle-line)andcomponentsspherescorresponding(squared-line)toforfig.
Ψ.Theoblateellipsoidhasanaspect-ratioofΔe=Φ.Ω)−,)theequivalentradiusofasphere
isEEfjT=Φ.20,andtheReynoldsnumberES=(∗ΨΦ.
16
>122⊥Vδ>/<2||8Vδ<4
Ratio SphRatio Ellip
0.010.06Φ0.11V0.160.21
Figure7.3:Ratiooftheverticaltothehorizontalvelocityfluctuationsforspheresand
oblateellipsoidsasfunctionofthevolumefraction,ΦV.Theoblateellipsoidaspect-ratio
isΔe=Φ.Ω),andtheReynoldsnumberES=(∗ΨΦ−).
Infig.7.3wepresenttheratio,δi||)/δi)⊥forspheresandoblateellipsoids.Forspheres
theratioshowsamaximumaroundΦV≈Φ.Φ0(Kalthoffet.al.(1996)andNicolaiet.
68
Results7.7.1
18y=88x+0.7611>2⊥Vδ4>/<2||20Vδ<−32>V⊥15
y=33x+3δ10−102>/<Vδ||50
<0.010.060.11ΦV0.160.21
0.010.060.11Φ0.160.21
VFigure7.4:Ratiooftheverticalvelocityfluctuationsforspherestothatoftheoblate
ellipsoidsasfunctionofthevolumefraction,ΦV.Theinsetshowsthecorresponding
ratioforthehorizontalfluctuations.−)Theoblateellipsoidaspect-ratioisΔe=Φ.Ω),and
theReynoldsnumberES=(∗ΨΦ.
al.(1995)).Forellipsoidstheratioshowsaslightlylargervaluethanthatofthespheres
forverysmallvolumefractionsandhasanoverallmonotonicdecreasewiththevolume
fraction.Wedisplaytheratiooftheverticalvelocityfluctuationsforspherestothatoftheellipsoids
infig.7.4.Thequotientexhibitsalinearbehaviorwiththevolumefractionfollowing
approximatelytherelationΣδiv)Egi,heS/δiv)Egi,Eaa)Te=11∗ΦV+Φ.0+.Theinsetshowsthe
horizontalcase,alsoalinearbehaviorΣδi)Sdg,heS/δi)Sdg,Eaa)Te=´´∗ΦV+´isfound.
Infigure7.5wepresenttheparallel,τandperpendicular,τ⊥componentsoftheautocor-
relationtimeforbothellipsoidsandspheres.Weusethedefinitionofthecorrelationtime
as:∞ΨτB=,ΣΦ)Φ,Σg)Rg(7.3)
Where,Σg)istheparticlevelocityautocorrelationfunctionwhichisdefinedas,Σg)=σ
δiΣg)δiΣΦ)>.HereδiΣg)=iΣg)−σi>isthelocalvelocityfluctuation,whereσi>
wastakenasthemean(horizontalorvertical)velocity.
Theverticalcomponentshowsanoveralllargevaluefortheoblateellipsoidscompared
tothatofthespheres.Thehorizontalcomponentsoftheautocorrelationtimebetween
oblateellipsoidsandspheresareindistinguishable.
Infigure7.5thefourcurvesdecayaspowerlawsgivenbyτ≈Φ−α,Weseethatthe
valuesofαfortheparallelandperpendicularcomponentsforellipsoidsareα≈Φ.ΨΨ
andα⊥≈Φ.Ψ+respectivelyandthatforthespheresareα≈−Φ.ΨΦandα⊥≈Φ.ΩΩ
articlesPMany
))s(tτd d →→
log(102c c →→
→b →b →a →a
Ellip ||⊥Ellip Esf ||⊥Esf
69
10−2log(Φ)10−1
VΦVFigurefor7.5:oblateellipsoidsAutocorrelationandthetimesτequiv(inalentunitsofspheresgh)assplitfunctionintoofcomponentsthevolumeparallelfraction(||)
andequivalentperpendicularsphere(⊥system)tohasgraavity.radiusTheEEfjToblate=Φ.20ellipsoidandtheEaspect-ratioS=(∗isΨΦΔ−e).=TheΦ.Ω),resultsthe
areplottedinalog-logscale.
respectively.Theseexponentsarevalidinthedilutelimit.
WecalculatethepaircorrelationfunctionfordifferentvolumefractionsΦVandtheresults
areshowninfig.7.6.Thepaircorrelationfunction,forsmallervolumefractionsΦ=
Φ.ΦΦΨ,clearlyshowslargeinhomogeneitiesinthesensethatthereisa“packingformation”V
asseeninfig.Ψ.+,ofoblateellipsoids.Theseinhomogeneitiesdisappearforlargevolume
thefractionpairΦVcorrelation≥Φ,Ω.functionFurthermore,thattheinthefirstpeakintermediateisclosecasetotheforΦVorigin,=Φ.locatedΦ)weatcane=seeΦ.+in,
whichisalsopresentatΦV=Φ.Ωbutsmaller.
ThisadditionallargerpeakatΦV=Φ.Φ)couldberelatedtothelocalmaximuminthe
sedimentationvelocityfig.7.1.Bylookingatthesnapshotsastheoneshowninfig.Ψ.+
oneseesthatentirebundlesofalignedparticlesseemtodetachandmovedownfaster
beenwhichobservmightedwellinthebethesedimentationoriginofofthisfibers,peak.ThisHerzhaftkindandof“bGuazzelliundlebeha(1999),vior”wherehasthesealso
bundlessettlefasterthantheindividualfibers.
viorbehaOrientational7.1.2ForthemeasurementoftheorientationweusetheEuleranglesdescribedinfig.4.4.The
meanverticalorientation(MVO),θ,asafunctionofthevolumefraction,isshownin
fig.7.7.ForsmallervolumefractiontheMVOshowsmorealignmentwithgravityandin
70
g(r)
g(r)
15
10
5
0015
10
5
002015
10g(r)
5
Pair correlation function=0.2ΦV
12r(R)345
MPair correlation function=0.05ΦV
12r(R)345
MPair correlation functionΦ=0.001V
Results7.7.1
0012r(R)345
MFigure7.6:Pairdistributionfunctionsforoblateellipsoidsfordifferentvolumefractions,
ΦV.TheReynoldsnumberES=(∗ΨΦ−).
articlesPMany
Θ
90
80
70
60
50
71
00.05ΦV0.10.15
Figure7.7:Meanverticalorientationθforoblateellipsoidsasafunctionofthevolume
fractionΦV.−)Theoblateellipsoidaspect-ratioisΔe=Φ.Ω),andtheReynoldsnumber
ES=(∗ΨΦ.
theorientationallimitΦV→behaΦaviorcloserforonealignmentoblatewithellipsoidgravityobservisedinobservedsection(which.Ψ.Ω;(.Ψ.corresponds´.tothe
WtheealsolocalvseeerticalforthevMVelocityOanmaximumintermediateatthesamemaximum,volumeatΦVfraction≈Φ.Φ)sho,wnwhichinfig.could7.1.explainThis
ΦV>intermediateΦ.Φ1theplotmaximumshoiswsanotpresentmonotonicfordecrease.spheres.Forlargervaluesofthevolumefraction,
Figure7.8showstheorientationaldistributionfunctionPΣPdfΣθ))fortheverticalangle,
θ,fordifferentvolumefractions,ΦV.Forsmallervolumefractions,ΦV=Φ.ΦΦ1the
orientationaldistributionshowsamaximumaroundPdfΣθ)≈Φ.Ψinagreementwithfig.
7.7.Thelimitingcase(ΦV→Φ),i.e.,onesedimentingoblateellipsoid,studiedbyusin
section(.Ψ.Ω;(.Ψ.´,presentsaverticalalignmentwithgravity(θ≈2Φd),andinfig7.7we
canseeavalueofθ≈1)d.
Asthevolumefractionincreases,thedistributionsflatten,andatΦV=Φ.Φ)thedistri-
butionshowsamoderatemaximumaroundPdfΣθ)≈Φ.(),correspondingtothesimilar
intermediatemaximuminfigures7.7and7.1.Weconcludethattheverticalvelocityis
influencedsignificativelybytheorientationalbehavioralonggravity,asitiswellknown
forotherspheroidsystemsKuuselaet.al.(2003).
Figure7.9showstheorientationaldistributionfunctionPΣPdfΣφ))fortheangleφ,for
differentvolumefractions,ΦV.Theorientationaroundtheverticalslightlyincreasesfor
smallervolumefractions,anddecreaseswithlargervolumefractions.Similarbehavioris
alsofoundforthethirdEulerangleψ.WeconcludethattheEuleranglesφandψarenot
muchinfluencedbythevolumefraction.
72
0.0080.050.173
Results7.7.1
0.008210.050.1731815))θ12P(cos(96300.20.4cos(θ)0.60.81.0
Figure7.8:ThedistributionfunctionPΣPdfΣθ))forthemeanverticalorientationθfor
difnumberferentEvS=olume(∗ΨΦ−fractions.).Theellipsoidaspect-ratioisΔe=Φ.Ω),andtheReynolds
))φP(cos(
10
5
0.0080.0500.173
00.20.4cos(φ)0.60.81.0
Figure7.9:ThedistributionfunctionPΣPdfΣφ))forthemeanverticalorientationφfor
oblateellipsoids.Theaspect-ratioisΔe=Φ.Ω),andtheReynoldsnumberES=(∗ΨΦ−).
changesOrientational7.1.3ToquantifytheorientationoftheoblateellipsoidsweintroducethequantityΨ=σ
ΩPdfΣθ)−Ψ>thatwasalsousedinKuuselaet.al.(2003),HerzhaftandGuazzelli(1999)
articlesPMany
0.5
73
0.2)−1>−0.1θ=<2cos(−0.4Ψ−0.70.4/2.4−10.4/1.60.4/0.800.05Φ0.10.150.2
VFigure7.10:OrderparameterΨasafunctionofthevolumefraction,ΦVforthreediffer-
entaspect-ratiosΔe=Φ.(/Ω.(;Φ.(/Ψ.+;Φ.(/Φ.1.
aswereorientationalperpendicularordertogravityparameter,.randomlyItwouldorientedgive−orΨ,Φalignedor+Ψwithifallgrathevityoblaterespectivelyellipsoids.
Figure7.10showsthebehaviorofΨagainstΦV,forsmallervolumefractions,ΦV≈
Φ.ΦΦΨ−Φ.Φ1theorderparametertakesnegativevaluesevidencingthealignmentalong
gravityandinagreementwiththelimit,ΦV→Φ(oneoblateellipsoid,section
(Φ.Ψ.Ω;≥(.Φ.Ψ.´Φ1).apositiveApproximatelyorderatparameterΦV≈Φ.impliesΦ1thetheorderorientationparameterisisperpendicularzero.Fortolargragerv-
V.ityIntherangeofΦV≈Φ.ΦΦΨ−Φ.Φ1,ΨhasalocalminimumclosetoΦV≈Φ.Φ)wherewe
foundalocalmaximuminfig.7.7andfig.7.1.Thesimulationswererepeatedwithtwo
otherdifferentaspectsratiosΔg=Φ.(/Φ.1;Φ.(/Ω.(andweobservedsimilarbehavior.In
thecaseofoneoblateellipsoid(ΦV→Φ)theorderparameterΨhasavalueverycloseto
−Ψastheellipsoidaspect-ratioisincreased.
numberReynoldsModerate7.1.4Figure7.11presentsthemeanverticalsedimentationvelocityforoblateellipsoids(
squaredline)andtheequivalentspheres(◦circlelined)asafunctionofthevolumefrac-
tionatmoderateReynoldsnumber(ES≈7).Inourpreviousworkthissimulationmethod
hasbeenusedwithsuccessuptoES≈ΨΦH¨oflerandSchwarzer(2000)andKuuselaet.
al.(2003).Theintermediatemaximumfortheellipsoidsisnotobservedinfig.7.11as
seeninfig.7.1atlowReynoldsnumber.
AcomparisonwiththephenomenologicalRichardson-Zakilaw(continouslineinfig
7.11)showsanexponentaroundc<eS=´.ΩforspheresandcEaaTe=(.Φforellips-
oids.Inbothbothcases,thedatafollowtheRichardson-Zakilawratherclosely.These
74
3
2.4)s(v||<v>
1.8
Outlook7.7.2Conclusionsand
SphEllip
00.040.08Φ0.120.16
Vline)Figureand7.11:asphereMean(dash-circlesedimentationline),vaselocityfunctioniΣg)offorthethevolumeoblatefraction,ellipsoidΦV.The(dash-squaredoblate
ellipsoidaspect-ratioisΔe=Φ.(/Ψ.),theequivalentspherehasEEfjT=Φ.20andthe
ReynoldsnumberES≈0.
elimitxponents(c≈((c.)<)eSand=´a.ΩturbandulentcEaaTeparticle=(.Φ)systemare(cbetween≈Ω.)),thelowRichardsonparticleandReZakiynolds(1954).number
Figure7.12(top)presentstheverticaldistributionfunction,PΣc6sΣθ))atmoderateReyn-
oldsnumber.Forallvolumefractions,PΣc6sΣθ))presentsalargerdistributionaround
PdfΣθ)≈Φ(θ≈2Φd),whichtendstobemuchflatter(PdfΣθ)≥Φ.Ψ))thaninfig.7.8.For
thec6sΣψ)other≈Φ,angularandforvlarariables,gervφolumeandψ,fractions,thedistribtheyutionsfollowshoawaconstantpeakbehaaroundvior.c6sΣφ)≈Φ,
Thebottomoffig.7.12showsthebehavioroftheorientationalparameterΨatmoderate
Reynoldsnumber.Foroneoblateellipsoid(ΦV→Φ),thevalueofΨiscloserto−Ψ
(verticalalignment),asinthecaseoflowReynoldsnumberfig.7.9.Theintermediate
maximum,forΔe=Φ.(/Ψ.),isnotobservedinfigure7.10,andthepointatwhichthe
(bottom).orientationalThisshiftparameterinΨΨisvalsoanishes,seenisinshiftedthecaseslightlyoftofibers,thewhenright(theΦVRe≈Φ.ynoldsΨ)fig.number7.12
increases,byafactorof5,Kuuselaet.al.(2003).
ConclusionsandOutlook7.2
Wehavesimulatedthesedimentationofoblateellipsoidsatsmallvolumefraction(ΦV≤
Φ.Ω)andsmallReynoldsnumber(ES≈ΨΦ−)).Wehavefoundthatatintermediatevolume
fractionthesettlingvelocityexhibitsalocalmaximumwhichtoourknowledgehasnever
beenreportedintheliterature.Itwouldbedesirabletoexperimentallyverifythismax-
imum.
articlesPMany
0.60.4)θcos(
0.0080.1100.173
1.00.8
75
0.110180.1731512))θP(cos(96300.00.20.4cos(θ)0.60.81.0
0.30.1)−1>−0.1θ−0.3=<2cos(−0.5Ψ−0.7−0.900.05Φ0.1V0.150.2
Figure7.12:Thetoppictureshowsthedistributionfunction,PΣPdfΣθ))ofthemeanver-
ticalorderorientationparameteratbehadifvesferentwithvtheolumevolumefractionfractionΦV.ΦV.TheThebottomoblatepictureellipsoidshowsaspect-ratiohowtheis
Δe=Φ.(/Ψ.),theequivalentspherehasEEfjT=Φ.20andtheReynoldsnumberES≈0.
Thislocalmaximuminthevelocitycanberelatedtothenonmonotonicbehaviorofthe
verticalorientationoftheoblateellipsoidsalonggravity,whichisshowninfigures7.7,
and7.8,andcanbeexplainedbythe“cluster”formationshowninfig.2.7,whichisalso
foundinfiber-likesuspensionsHerzhaftandGuazzelli(1999).
AtlowReynoldsnumbertheorientationalorderparameterΨvanishesaroundΦV≈Φ.Φ1
fig.7.7.AsΦVdecreasestheorientationalalignmentwithgravityincreasesasshownin
fig.7.7and7.12(bottom),asforlowandmoderateReynoldsnumberandinthelimit
ΦV→Φasingleellipsoidalignswithgravity,whichisadistinctivefeatureofthesteady-
stateregimeforasingleoblateellipsoidasreportedinsections4.1.2,4.1.3andGaldiet.
(2001).al.
76
7.7.2ConclusionsandOutlook
WealsopresentdataatmoderateReynoldsnumber(ES≈0)forthesedimentationve-
locityofoblateellipsoidsasthevolumefractionΦVisincreased.Asinthecaseoflow
Reynoldsnumbertheellipsoidshaveasmallersedimentationvelocitythantheequivalent
spheres,fig.7.1and7.11.ThedataforellipsoidsandspheresfollowtheRichardson-
ZakilawRichardsonandZaki(1954)withexponents(cEaaTe≈´.Ω,ES=ΨΦ−))and
(c<eS≈(.Φ,ES=0)respectively.ThePΣc6sΣθ))distributionpresentsalargeralignment
ofellipsoidswithgravitycomparedtothosewithsmallReynoldsnumber.Thevanishing
oftheorderparameterisslightlyshifted(ΦV≈Φ.Ψ)totherightastheReynoldsnumber
increases(seefig7.12,bottom).Thealignmentwithgravityispresentforsmallandmod-
erateReynoldsnumberasΦV→Φ,asshowninfig.7.12(top)andfig.7.8,whichisin
agreementwiththeorientationalbehaviorofasingleellipsoid(section4.1.2;4.1.3).All
thesimulationsinthisworkarelocatedinthesteady-fallingregime,chapters´and(,for
ellipsoid.oblatesinglea
8Chapter
Diffusion
ThislipsoidschapteratlowisanddedicatedmoderatetotheReinvynoldsestigationnumbers.oftheWedifwillfusivbeeginbehawithvioranofintroductionsedimentingtheel-
commontheoreticaltoolsusedtostudythediffusivebehaviorofsedimentingparticles.
eWexplorediscussthethebehaviorresultsofforthesystemellipsoidsunderinvcomparisonariationsoftothetheequidynamicalvalentspheres.viscosity,Also,ellipsoidwe
densitytionally,andwepresentaspect-ratio.theanomalousFurthermore,difwefusiongivefortheoblateorientationalellipsoids.difLastlyfusion,webehavior.summarize.Addi-
oductionIntr8.1
AswasexplainedinchapterΨ,inasedimentingsuspensiontherearelargechangesin
thesiondominatesconcentration,overthatthecanthermaleitherBrobewniantemporaldiforfusion,spatial.intheThissystemhconsideredydrodynamic-likhere.edifThefu-
dimensionlessquantitythataccountsfortherelativeimportanceofthishydrodynamicdi-
fussionprocessoverthethermaldiffusionistheP´ecletnumberPS.WhenPSismuch
largerthan1,BrownianmotioncanbeneglectedRamaswamy(2001),KuuselaandAla-
Nissila(2001).ForsmallervaluesofPSσσΨ,inturn,thehydrodynamicdiffusionisnot
ant.vreleInaregimewhere(PS>>ΨandESσσΨ),sedimentingspheresundergolong-ranged
hydrodynamicfluctuations(seechapter1,sec.1.6).Theycauseinthelongtimelimit,
thatthefluctuatingparticlemotionbecomesdiffusive,Nicolaiet.al.(1995).There-
fore,wecandeterminethelongtimebehaviorofthisrandom-likeparticlemotions,by
ebyxaminingcomputinghowthetheparticleparticlevvelocityelocityfluctuationbecomesuncorrelated.autocorrelationThisefunction,xaminationΣg),(seeisKrealizeduusela
andAla-Nissila(2001)andchapter+,sec.+.Ψ).Thisquantitywasdefinedinsec.+.Ψ,as
ws:follo
,Σg)=σΔiΣg)ΔiΣΦ)>
77
(8.1)
78
oductionIntr8.8.1
wheretheaverageistakenoveralltheparticlesinmotion.HereδiΣg)=iΣg)−σi>
isthelocalvelocityfluctuation,whereas,Σg)isusedtodefinethehydrodynamicdiffu-
sioncoefficient<,inanalogywiththeBrowniantracerdiffusioncoefficientofBrownian
particlesimmersedinafluid(KuuselaandAla-Nissila(2001)).<isdefinedbytheGreen-
as:formulauboK
∞Ψ<=RΦ,Σg)Rg
whereRisthespatialdimension,andforthediscretecaseasfollows:
∞ΨΨ<=R[Ω,ΣΦ)+,Σc−τ)4
=(c
(8.2)
(8.3)
whereτisthetimestep.
Anothermethodtoinvestigatethelongtimebehaviorofasedimentingparticles,istocom-
putethemeansquareparticledisplacement(hereafterM.S.D.),Kalthoffet.al.(1996),
i.e.thesecondmomentoftheparticledisplacement,HerzhaftandGuazzelli(1999).Itis
ws:folloascalculated
σk)Σg)>3=σ[kΣg)−ΣkΣΦ)+σi>g)4)>(8.4)
herethebracketsindicateanaverageovertheensembleofthoseparticlesthatareabove
thefinalbottompositioninthecontainer,andσi>istheirmeanvelocitytakenofall
particleswithi=Φ.Asimplediffusivebehaviorischaracterizedbyalineargrowthwith
time.Theself-diffusivity<,(Nicolaiet.al.(1995)),canbedeterminedfromtheslopeof
line.thisAponentslargetograanosotropvity,yhasbetweenbeenthereportedM.S.D.byforothertheparallelauthors()(Nicolaiandet.perpendicularal.(1995);(⊥)Laddcom-
(1996);Kalthoffet.al.(1996)),whofound<>><⊥.However,thisanisotropybe-
comeslessimportantforlargeReynoldsnumbersandvolumefractions(Kalthoffet.al.
(1996),Nicolaiet.al.(1995),KuuselaandAla-Nissila(2001)).
Both,<and<⊥areobtainedbyexamininglongtimebehavioroftheparticledisplace-
mentbythefollowingrelations:
σkΣg)⊥>)≡Ω<⊥g;σkΣg)>)≡Ω<g.(8.5)
Despitetheclearevidencefornormaldiffusivebehaviorfoundinthecurrentresearch,
someexperiments,(Rouyeret.al.(1999))andsimulations(MiguelandPastor-Satorras
(2001)),hadshownthatthevelocitiesandtrajectoriesofnon-Brownianparticlesina
quasicomponentbidimensionalandasuperdiffluidizedfusivebed,behaexhibitvioraparalleldiffusitovegrabehavity.viorThisalonglatterthesuperdifperpendicularfusive
Diffusion
40
35
30
25
200
3
6
a)
9
7260
48vertical36
24
8
b)
201612horizontal
79
Figure8.1:(a)Abidimensionalvelocitymapshowingfasterandslowerellipsoids.(b)
TypicalBrownian-liketrajectoriesinellipsoidssedimentationinthelaboratoryreference
frame.TheReynoldsnumberisΩ×ΨΦ−)andtheellipsoidaspect-ratioisΔe=Φ.(/Ψ.+.
behaviorisalsoknownas,“anomalousdiffusion”,anddefinedasthegrowthofthesecond
by:momentumorder
σk)Σg)>≡gα
(8.6)
withα=Ψ.
Furthermore,wecouldextendequation8.5totheangularcase,anddefinetheM.S.D.as:
σθ)Σg)>≡Ω<θg(8.7)
Withregardtosedimentingparticleswithnon-sphericalshape,apart,fromafewexcep-
tions(e.g.Kuuselaet.al.(2001)andchapters(,)),verylittleisknownaboutthediffusive
behavior,beitfromsimulation,experimentortheory.Non-sphericalparticles,withro-
tationalsymmetryaroundanaxis(oblateorprolateellipsoids),givesrisetorotational
degreesoffreedom,andgenerallyplaysanimportantroleinthesedimentation,(Kuusela
et.al.(2003)andchapter+).
80
600⊥ll450(a)>*2300<x150
3060)time t(ts32⊥Sph⊥Ellip24(c)>*216<x
8
210⊥ll110log(dR/dt)(b)(b)010
19010))log(t(ts600llSphllEllip450(d)>*2300<x
150
Results8.8.2
210
204060306090120
time t(ts)time t(ts)
Figure8.2:Figure(a)showstheparallel()andperpendicular(⊥)componentsofM.S.D.
forsedimentingellipsoids.Picture(b)showstheslopebehaviorintime,ofthecurvesin
pictureballistic(a),andinanon-diflog-logfusivescale.regimes.ThethickThelodottedwerlinespictures,in(c)between,and(d)presentshowthethegrowthcomparisoninthe
betweenellipsoidsandsphereswithregardtotheperpendicular⊥(c)andparallel(d)
componentsoftheM.S.D..ThesphereradiusisEEfjT=Ψ.ΦΨ.TheReynoldsnumberis
Ω×ΨΦ−)andtheaspect-ratioΔe=Φ.(/Ψ.+.Thenumberofellipsoidsisoftheorderof
0.ΨΦResults8.2Infigure8.1(a),wepresentbidimensionalsnapshotofthevelocitymapforsedimenting
ellipsoids.Themapischaracterizedbycomplexandhighlyfluctuatingvelocityvectors
Diffusion
81
pointinginawiderangeofdirections,withverydifferentmagnitudes.Thesnapshot
reflectsthecomplexityoftheswirlsandchannelsthatareverysimilartothosereported
veolumexperimentallyfractioninofSethegre´etparticlesal.in(2001)theandsysteminisΦsimulations=Φ.Ω.byRouyeret.al.(1999).The
VInfigure8.1(b)wepresentatypicalellipsoidtrajectoriesinacontainerscaledinunits
ofthecharacteristicsmayorradiiobservEMed.byTheNicolaitrajectorieset.al.are(1995)ratherandPecomplicatedyssonandandeGuazzellixhibitman(1999),yofsuchthe
asthepresenceofloopsandastronganisotropybetweentheparallelandperpendicular
fluctuationsintheellipsoidtrajectory.
exhibitPicturesthe(a)larandge(b)inanisotropfigurey8.2betweenshowthetheparallelM.S.D.(for)andsedimentingperpendicularellipsoids.(⊥)Thecomponents.graphics
Infiguregeneral,8.2(b),bothinalog-logcomponentsscale,presentbyaanparallelinitialthicksocalleddotted-lineballisticinrebetweengime,asofthedepictedcurves.in
Thisballisticregimeisproportionalto≈g).Then,wefoundanon-diffusivebehavior
whichisquiteinterestingandwillbediscussedinsection)ofthischapter.
Anotheraspectofthelong-timebehavioristhat,asaconsequenceofthefinitesize
container,theellipsoidsreachasaturationregime.Thisischaracterizedbyfluctuations
aroundthefinalpositionofeachellipsoidinthecontainerbottom)(Kalthof)fet.)al.(1996)).
Thetimeingraphicsunitsofaregh,(seenormalizedeq.Ω.in´Φ).bothcomponentsaccordingtok∗≡k/EEfjandthe
ThecomparisonbetweentheM.S.D.forellipsoidsandthatforspheresisgiveninfigure
8.2,numberin(theES⊥≈(c)ΨΦand−))and(d)forflatcomponents.ellipsoids,Inourthatthesimulations,componentswefoundforatloellipsoidswerReareynoldsmuch
largerthanthoseforspheres.Thisphenomenoncanbeexplainedbythepresenceofa
muchlargernetdisplacementforellipsoidsthanspheres,ascanbeseeninfigure8.1.
Itisinterestingtopointout,thattheperpendicularcomponentoftheM.S.D.,fig.8.2
(c),foraveryflatellipsoid,experiencesapeakwhichthendecreasesabruptly,beforethe
saturationregimeisreached.Thisbehavioriscompletelynewandcanonlybeassociated
totheparticleshape,sincethespheresonlyechibitamonotonicincrement,(seefig.8.2
with(c)).aThisfixedlargepeakaspect-ratio,inthebutvellipsoidariableviscosityperpendicularorparticlecomponent,densityis..presentinallsimulations
8.2.1Changeindensity,viscosityandaspect-ratio
Theslopeforeachoneofthecurvesinfig.8.3(a)and(b)becomeslargeastheellipsoid
densityisincreased,keepingconstanttherestofparametersinthesystem,showingthe
ponentsincreaseofincreasestheinertiamuchinfasterellipsoidsthanforandspheres.spheres.ForFortheparallelellipsoids,thecomponentslopetoingrabothvity,com-the
denserellipsoidsdiffusemuchfaster,quicklyreachingthesaturationregime.Thiscan
be8.3(c)seenandby(d)wecomparingpresentthethecurvesM.S.D.forρ(beha=).viorΦandasρthe1=ΨΨ.kinematicalΦinfigureviscosity8.3(a).isInchanged.figure
Forallofthecases,theincreamentintheviscositydecreasestheslopeofeachonthe
Results8.8.282400600(a)(b)4002>*2>*200
<x<x200ρ1=5.0ρ1=5.0
ρ2=7.0ρ2=7.0
ρ3=9.0ρ3=9.0
ρ4=11.0ρ4=11.0
020406080100120020406080100120
time t(ts)time t(ts)
µ1,Ell=7.7µ1,Sph=7.7
µ2,Ell=6.7300µ2,Sph=6.7
400µ3,Ell=5.9(c)µ3,Sph=5.9
µ4,Ell=5.3µ4,Sph=5.3
2>*2>*200(d)
<x<x20010001530450306090120
time t(ts)time t(ts)
6006001.00.4/1.61.20.8/1.64801.6/1.61.2/1.64801.61.4
3603602>*(e)2>*(f)
<x<x2402401201200408012016020024028004080120160200240280
time t(ts)time t(ts)
Figure8.3:Figuresa)showtheparallelcomponentoftheM.S.D.forellipsoidsand
equivalentspheresb),astheparticledensitychanges.Figuresc)andd)presentthevari-
ationforthedynamicalviscosityandfigurese)andf)showthechangeintheoblate
aspect-ratioandtheequivalentradius,respectively.TheReynoldsnumberisES≈ΨΦ−),
thespheresradiusisEEfjT=Ψ.ΦΨandtheellipsoidaspect-ratioΔe=Φ.(/Ψ.+.
Diffusion
>*2<x
1512
9
6
3
0
0.4/1.60.8/1.61.2/1.61.6/1.6
83
0306090120150180210240
)time t(tsFigure8.4:BehavioroftheperpendicularcomponentofM.S.D.forellipsoidsasthe
aspect-ratiochanges(Δe=Φ.(/Ψ.+,Δe=Φ.1/Ψ.+Δe=Ψ.Ω/Ψ.+andΔe=Ψ.+/Ψ.+).
TheReynoldsnumberisES≈ΨΦ−).
curvesInfigure8.3(c)and(d).TheincreaseoftheviscosityreducestheM.S.D.inthe
suspension.Also,asforparticledensityvariations,thechangesintheviscositylead,for
lowerReynoldsnumbers,toadirectlyproportionalincrementintheM.S.D..
Thepeaksintheellipsoidperpendicularcomponent(seefig.8.4),ispresentinallofthe
simulationswherethekinematicalviscosityorparticledensityarechanged,withafixed
aspect-ratioandlowerReynoldsnumber(ES≈ΨΦ−)).
Next,wepresenttheM.S.D.fordifferentellipsoidaspect-ratiosΔeandequivalentsphere
radiiEEf.Thevariationintheaspect-ratiogoesfromaflatellipsoiduptoasphere,while
thevolumefractionΦ≈Φ.Ωiskeptconstant.Theresponseundervariationsoftheoblate
aspect-ratio,presentsalinearincreaseintheslopeofeachcurve,inbothellipsoidsand
spheres,asisshowninfigures0.´(e)and(f),respectively.
TheslopegrowingintheM.S.D.astheaspect-ratioincreases,becomingone,showsthat
thesphereshaveamuchlargerM.S.D.thantheellipsoids.Theellipsoids,ontheother
hand,havemoreresistancetosediment.Thischaracteristicispresentinbothcomponents
(seefigure8.3(e)and8.4).Asfortheparallelcomponentfig.8.3(e)and(f),spheresand
ellipsoidspresentthesamemonotonicbehaviorbeforetheyreachthesaturationregime.
Infigure8.4,wecanseehowtheperpendicularcomponentoftheM.S.D.approachesthe
saturationregime,astheaspect-ratiogrows.Thepeakisshiftedtotheleftandbecomes
84
120
902>Θ<603000
60
452>φ<30(a)ρρ1=7.0=5.015
2=9.0ρ3=11.0ρ430609012000
)t(ts60
Results8.8.2
(b)=5.0ρ1=7.0ρ2ρ=9.03=11.0ρ410t(ts)2030
452>ψ<(c)3015ρρ12=7.0=5.0
=9.0ρ3=11.0ρ400612t(ts)182430
Figure8.5:AngularM.S.D.fortheEuleranglesθ-fig.(a),φ-fig.(b)andψ-fig.(c)under
variationsofellipsoiddensity,ρ(=),0,2,ΨΨ.TheReynoldsnumberisΩ×ΨΦ−)andthe
ellipsoidaspect-ratioisΔe=Φ.(/Ψ.+.
muchlargerandsharperastheaspect-ratiobecomesΨ(thesphere).
diffusionOrientational8.2.2Figure8.5showstheangularM.S.D.,σΔΘ>)forthethreeEulerangles(seefigure4.4
inchapter´),undervariationsoftheellipsoiddensity,whichcorrespondtothetransla-
tionalbehaviorshowninfigure8.3(a).
Itisinterestingtonote,thattheangularM.S.D.followsabehaviorwhichissimilarto
thecorrespondingtranslationaldegreesoffreedom,inthesensethattheangularM.S.D.
exhibitsatthebeginningofthesedimentationafastergrowthandthenapproachesto
Diffusion
85
thecomparedsaturationtotheregime.translationalThisapproachcomponentsto(seesaturationfig.is8.3quite(a)),fandasteris(seepresentfig.for8.5),theasitthreeis
angles.EulerAstheoblatedensityisincreased,theangularM.S.D.foreachoneoftheEulerangles
shiftingslightlyintheincreases.finalvThealuereleofvtheantvsaturationariationinrethegime(seeangularfig.M.S.D.8.5).Wisecanpresentobservinetheupw(approx-ard
imately),thatequalvariationsinellipsoiddensitycauseequalupwardincrementsinthe
alue.vsaturationIttheissamealsokindinterestingofupwtoardobservshiftinge,thatasthedescribeddecreaseaboofve,thebutwithkinematicalasmallerviscosityshiftinggivesvalueriseofto
thefinalsaturation(seefig.8.6).
reducingIncreasingthethekinematicalimportanceofviscosityinertial,increasesforcesbytheusingsaturationahigherstateinmasstheofEulertheangles.ellipsoidor
8.2.3Non-diffusivedynamicalbehavior
EWΣeg)no=wσkstudy)Σg)the>,behaeq.vior(8.4).oftheThistimetypederiofvativeofcharacterizationtheM.S.D.,ofthedefineddiffusiasveREΣgbeha)/Rgviorwithin
sedimentationisalsousedintheworkofRouyeret.al.(1999)andMiguelandPastor-
whoseSatorrasconstant(2001).vInalueaiscaseequivwherealentREto/Rgone≡halfofPdcfgNcgthe,difwefusionhaveaconstant,simpledif(seefusieq.ve8.5).behaIfviorwe,
findnon-diffusivebehavior,thenRE/Rg=PgSandthetemporalbehavioroftheM.S.D.is
givenbyeq.(8.6).
densityparticletheinChange
Figure8.7(a)presentstheperpendicularcomponent(⊥),ifthespheredensityischanged.
Forsimpleρ(=dif)fusi.Φvetheandevolutionsaturation.oftheAncurveinterestingintime,aspectexhibitsheretheconsistsabovinerethefgimes,actthatballistic,when
themuchparticleshorterindensitytime.ρisBasicallyincreased,the(ρ=)increment.Φ→ofρ=theΨΨ.Φinertial)theforces,simpledifreducesfusivetheretimegimeofis
thesimplediffusiveregime.Thisgeneralbehaviorforspheresisinagreementwiththe
resultspresentedby(Rouyeret.al.1999)and(MiguelandPastor-Satorras2001).
ForAfterthethat,aparallelnon-diffusicomponentvebeha()viorfigure8.7characterized(b),allbythegα,curvwithesaneexhibitxponentaαballistic=Ψ.(recangime.be
observed(Rouyeret.al.(1999)).Liketheperpendicularcomponent,thelengthintime
oftheparallelcomponentisreducedforlargespheredensities,asshowninfigure8.7(b).
Infigure8.8(a)and(b)wecanobservethebehaviorofthetimederivativeoftheM.S.D.
aforballisticellipsoids.regimeForandthethenaperpendicularnon-difandfusivereparallelgime,whichcomponentsupto(seenowfigureisnot8.8)knowewnfirstinfindthe
86
120
90>2Θ<603001
75
50>2φ<25=5.0νEll,1=7.0νEll,2=9.0νEll,3=11.0νEll,4021110t(t)s60
Results8.8.2
=5.0νEll,1=7.0νEll,2=9.0νEll,3=11.0νEll,4302010)t(ts
45>2ψ<3015ννEll,2Ell,1=7.0=5.0
ννEll,3Ell,4=9.0=11.0
0010t(t)2030
sFigure8.6:AngularM.S.D.fortheEuleranglesundervariationsinthekinematicalvis-
cosity.TheReynoldsnumberisΩ×ΨΦ−)andtheellipsoidaspect-ratioisΔe=Φ.(/Ψ.+.
literature.TheexponentsinbothcomponentsareequalαegaaEa=Ω.),αeEge=Ω.)and
largerthantheslopeoftheballisticregime.
Incontrasttothespheres,thedensityvariationdoesnotmodifysignificativelythenon-
diffusiveregime’scharacteristictime.Thiskindofbehaviorforthediffusionofnonspher-
icalparticleswasneverbeforereporteduptonow,andtheexperimentalverificationwill
benecessary.Fromtheplot,wecanalsoextractthat<vEgi<Sdg,thereforethediffusive
anisotropic.highlyisgimereForbothellipsoidsandspheres,theM.S.D.inbothcomponentsaredisplacedupwardas
theparticledensitygrows.AsexpectedatlowReynoldsnumber,anincrementinthe
inertialforces,producesalargegrowthoftheM.S.D..
.elyvrespecti,viorbehaevfusinon-diftheandevfusidiftherepresent,linesdashedandsolidThe.+.Ψ/(.Φ=eΔisaspect-ratioellipsoidthe,)−ΨΦ×ΩisnumberynoldsReThechanged.isdensitytheasellipsoidsforM.S.D.theofevativderitimetheofcomponents(c)paralleland(a)⊥perpendicularthewshofiguresThe8.8:Figure)OΣ)NΣreplacementsPSfrag=11.04ρ=9.03ρ=7.02ρ=5.01ρ/dt)log(dR))slog(t(t110010−110−210−310210110010)OΣ)NΣreplacementsPSfrag=11.04ρ=9.03ρ=7.02ρ=5.01ρlog(dR/dt)))slog(t(t010−110−210−310210110010.elyvrespecti,viorbehaevfusinon-difande87
vDiffusion
fusi)NΣ
difOΣ)
therepresentlinesdashedandsolidThe.ΦΨ.Ψ=jTEfEradiusspheresthe,)−ΨΦ×ΩisnumberynoldsReThechanged.isdensitytheasspheresforM.S.D.theofevativderitimetheofcomponents(b)paralleland(a)⊥perpendicularthewshofiguresThe8.7:Figure)NΣreplacementsPSfrag=11.04ρ=9.03ρ=7.02ρ=5.01ρ/dt)log(dR))slog(t(t110010−110−210−310210110010replacementsPSfrag=11.04ρ=9.03ρ=7.02ρ=5.01ρ/dt)log(dR))slog(t(t010−110−210−310110010
88
010
110
Results8.8.2
ΣΣOO))
10−1ΣΣNN))100ΣΣOO))
log(dR/dt)log(dR/dt)−11010−2ν1,Sph=7.7ν1,Sph=7.7
=6.7ν=6.7νν2,Sph3,Sph=5.910−2ν3,Sph2,Sph=5.9
PSfragreplacements−3ν4,Sph=5.3PSfragreplacementsν4,Sph=5.3
10101102ΣN)101102
ΣO)log(t(ts))log(t(ts))
Figure8.9:Thefiguresshowtheparallel(b)andperpendicular⊥(d)componentsof
RetheynoldstimederivnumberativeisofΩ×theΨΦ−)M.S.D.,theforspheresspheresradiusastheEEfjT=kinematicalΨ.ΦΨ.viscosityischanged.The
viscositykinematicaltheinChange
Nextwestudythebehaviorofthesystemunderchangesinthekinematicalviscosity.Fig-
ure8.9(a)and(b)showstheM.S.D.forspheresintheperpendicular(⊥)andparallel(||)
components.Figure8.9(a)showswelldefinedballisticandsimplediffusiveregimes.The
plotsshowaslightincrementintimeforthesimplediffusiveregimeasthekinematical
viscositydecreases.Also,thereisaclearupwardshiftingasthekinematicalviscosityde-
creases.ThespheresincreasetheirM.S.D.asthekinematicalviscositybecomessmaller.
Inthecaseoftheparallel(||)component8.9(b),wefoundaballisticandnon-diffusive
regimes.Theexponentαforthenon-diffusivebehavioristhesameinallthecurvesand
α=Ψ.((Rouyeret.al.(1999)).Suchasfortheperpendicular(⊥)component,the
upwardshiftingisalsopresentfortheparallel()component.
Theellipsoidssystemisstudiedunderthesamekinematicalviscosityvariations.Figure
8.10showsthebehavioroftheperpendicular(⊥)(a)andparallel()(b)componentsof
M.S.D..theTheperpendicularcomponent(seefigure8.10(a))exhibitsballisticandnon-diffusive
behavior.Thecurves,asinthecaseofspheres,showanupwardshiftingasthekinemat-
icalviscositydecreases.Astheviscositydecreasestheexponentαforthenon-diffusive
regimebecomesgraduallymuchsmaller:ν=0.0→α=Ω.(toν=).Φ→α=Ω.Ψ.
Fortheparallelcomponent(),thedifferencebetweentheballisticandthenon-diffusive
behaviorisnotpronounced,andforthelowerkinematicalviscosityν=).Φ→α=Ω.Φ
thenon-diffusivebehaviorinthesystempracticallydisappears.
.)−ΨΦ×ΩisnumberynoldsReThechanges.radiusspheretheasspheresforM.S.D.theofevativderitimetheofcomponents(b)paralleland(a)⊥perpendicularthewshofiguresThe8.11:Figure)OΣ)OΣ)NΣreplacementsPSfrag))slog(t(t−110210110)OΣ)NΣ)NΣreplacementsPSfrag))slog(t(t−210210110.+.Ψ/(.Φ=eΔisaspect-ratioellipsoidthe,)−ΨΦ×ΩisnumberynoldsReThechanged.isviscositykinematicaltheasellipsoidsforM.S.D.theofe89
vΣΣOO))
atiChangeintheellipsoidaspect-ratioandsphereradius
Inthecaseofvariationsoftheequivalentradii,eq.(3.28),figure8.11showsthebehavior
oftheparallel()andperpendicular(⊥)components.Astheequivalentradiidecreases,
v210
deriDiffusion
time110
the=1.0Req,1=1.2Req,1=1.4100RReq,1=1.6
eq,1log(dR/dt)−110
of2=1.0R10eq,1=1.2Req,1=1.4Req,1=1.6Req,1110log(dR/dt)010
components(c)⊥perpendicularand(a)parallelthewshofiguresThe8.10:Figure)NΣreplacementsPSfrag=5.34,Ellν=5.93,Ellν=6.72,Ellν=7.71,Ellνlog(dR/dt)))slog(t(t110010−110−210210110)OΣ)NΣ)NΣreplacementsPSfrag=5.34,Ellν=5.93,Ellν=6.72,Ellν=7.71,Ellνlog(dR/dt)))slog(t(t010−110−210−310210110
Results8.8.2
Furthermore,intheparallelcomponent(seefigure8.12(b)),wecanseethechangeinthe
difslopefusivthatebehaviorcharacterizesforthespheresv(ariationΔe→fromΨ).Thenon-difefusixponentsvebehagoesviorfromfor(Δe=ellipsoidsΦ.Ω),toαthe=Ω.non-´)
oblateellipsoidsto(Δe=Ψ,α=Ψ.(,Rouyeret.al.(1999))spheres.
Infigure8.12(a)and(b)wepresenttheM.S.D.behaviorforellipsoidsastheaspect-
ratioischanged.Herewewanttodrawattentiontoaninterestingchangefromanon-
diffusiveregimetosimplediffusivebehaviorthatcanbeobservedintheperpendicular
(⊥)component(seefigure8.12(a))astheellipsoidaspect-ratiotendstoone(Δe→Ψ,
sphere).Theslopeofthecurveinthenon-diffusivepartchangesfrom(Δe=Φ.Ω),α=
Ω.Ω)to(Δe=Ψ,α≈Φ).
Fortheperpendicular(⊥)component,allthecurveslookquitesimilartoeachother,with
aregimeslightisdifmuchferencefasterbeingthanthatintheforcasespheresofEEfwith=EΨ.EfΦ.=TheΨ.e+thexponentαapproachforthistothenon-difsaturationfusive
regimeisα=Ψ.(.
wecanseeinfigure8.11(a)thesamekindofupwardshiftinginthecurves,asviscosity
ordensity,ischangedinthesystem.Asthesphereradiusisincreasedthepresenceofthe
simplediffusiveregimeisincreasedduringaverylongtime.
90
102Δ r1=0.4/1.6
=0.8/1.6 rΔ2=1.2/1.6 rΔ3=1.6/1.6 rΔ4110
log(dR/dt)010
=0.4/1.6 rΔ1=0.8/1.6 rΔ2100Δ r3=1.2/1.6
rΔ=1.6/1.64−110log(dR/dt)
.)−ΨΦ×ΩisnumberynoldsReThechanges.aspect-ratioellipsoidtheasellipsoidsforM.S.D.theofevativderitimetheofcomponentsparalleland(a)⊥perpendicularthewshofiguresThe8.12:Figure)OΣ)OΣ)NΣreplacementsPSfrag))slog(t(t−110210110)OΣ)NΣ)NΣreplacementsPSfrag))slog(t(t−210210110
Diffusion
600400(a)3004002>*2>*200
<x<x200ρρ1=7.0=5.0100
2=9.0ρ3=11.0ρ40501001502000
)time t(ts=7.7ν1,Ell=6.7ν2,Ell400νν3,Ell=5.3=5.9300
4,Ell2>*2>*200
<x<x200(c)100
01057035time t(t)s480
360(e)>*2240<x
0480
360>*2240<x
1201200.4/1.60.8/1.61.2/1.61.6/1.600900600300)time t(ts
(b)
=5.0ρ1=7.0ρ2=9.0ρ3=11.0ρ450100150time t(t)200250
s=7.7ν1,Sph=6.7ν2,Sph=5.9ν3,Sph=5.3ν4,Sph
(d)
50100time t(t150)200250
s
(f)
1.01.21.41.6900600300time t(t)s
91
Figure8.13:Weshowthecollapseofthecurvesfromfig0.´.Allthecurvescollapse
quitewelljustifyingthetransformationrule,table0.Ψ.
Similarity8.2.4
Inpresentedtable8.1,inwefigurepresent8.3.ThetheReynoldstransformationnumberrulesReisthatleftareinvusedarianttobythecollapsethetransformations.pictures,
92
ConclusionsandOutlook8.8.3
Time→AdimensionalTime
igi→sσk)>→1θk,22eqρ
viv→sTable8.1:Transformationrulesinsedimentation.
)−noTheseanalyticalresults,ehowexpressionver,toonlyholdaccountforthesmallterminalReynoldssettlingvnumberselocityE,SatΨΦmoderate,sinceRethereynoldsis
numbers.Therefore,itisimpossibletocomputetheStokestime,eq.(3.30)atmoderate
Re.
ConclusionsandOutlook8.3
Inthischapter,thediffusionofoblateellipsoidsinsedimentationwasstudied.Wehave
foundanon-diffusivebehaviorinbothcomponents(parallelandperpendicular),which
iscompletelynewandnotreportedintheliterature.Ourcomparisonwiththeequivalent
spheresystemtoellipsoidsshowsthatthereisasimplediffusiveprocessfortheperpen-
dicularandanon-diffusiveprocessfortheparallelcomponents.Thisresultregardingthe
diffusivebehaviorinspheresagreeswiththeworkof(Rouyeret.al.1999)and(Miguel
2001).-SatorrasastorPandInaddition,thebehaviorforellipsoidsandsphereswasinvestigatedastheparticledensity,
kinematicviscosityandellipsoidaspect-ratioorsphereradiiwerechanged.Itwasfound
thattheincrementoftheinertialforces,bymeansofthegrowthinparticledensityorthe
decreasinginthekinematicalviscosity,reducesthepresenceofthediffusivebehavior,
andthesystemgoesfasterfromtheballistictothesaturationregime.Whenthesphere
radiiarechanged,wecouldobserveasimilarbehavior:Asthesphereradiusisincreased
theinertiagrowsandthusalsotheparticleM.S.D..
ItisimportanttopointoutthebehaviourofthetimederivativeoftheM.S.D.inboth
componentsastheaspect-ratiochanges(seefigure8.12).Fortheverticalcomponent,
withthegrowthoftheaspect-ratiotheM.S.D.goesfromthenon-diffusivebehaviorto
thesimplediffusiveregime.Intheparallelcomponent,theexponentαfornon-diffusive
regimeschangesfor(α=Ω.Ω,Δe=Φ(/Ψ.+)flattenedellipsoidsto(α=Ψ.(,Δe=Ψ)
spheres.Last,wefoundasimilaritylawforthesedimentationprocesswhichisvalidatsmall
Reynoldsnumbers.Itispresentedintable8.1.
9Chapter
FluctuationselocityV
Inthislastchapterweexaminethedynamicalbehaviorofsedimentingellipsoidsand
spheresunderchangesofthecontainersize.Inthefirstsectionwestudytheinfluence
onthespatialcorrelationsastheparticulatevolumefractionischanged,comparingthe
resultsforellipsoidsandspheres.Wealsopresentthestudyofthevelocityfluctuationsas
afunctionofthevolumefraction.Afterthat,weinvestigatethedivergenceofthevelocity
fluctuationsasthecontainersizeischanged.Finally,wesummarize.
Wechoosethedensityofthefluid,theStokesvelocityandthelargerradiusoftheellipsoid
equalsquaretobaseunityofinsideourA=system.ΩΩeInxtendedallofupthetoAcases,=theΨ0+,andcontaineralatticeheightisconstantA=ofVΨ)Φ=andΦ.0a.
Theratiobetweenthedensityoftheoblateellipsoidsandthefluidis(.
elationscorrSpatial9.1
Westartouranalysisbystudyingthespatialcorrelationsinthevelocityfluctuations(here-
afterSCVF).Thenormalizedautocorrelationfunctionoftheparallel(||)componentofthe
velocityfluctuationsaredefinedas,(Segre´et.al.(1997)):
,Σr)≡δiΣΦ)δiΣr)(9.1)
δiΣΦ))
1cmwherethebrackets...representanensembleaverageoverseveralindividualdif-
ferentconfigurationsinspaceandorientations(ellipsoids).WhereδvT=vT−vhEC,
representsthefluctuationsinthevelocityandvhEC=iTisthemeanvelocityoverthe
configuration.Ifthedistanceristakeninthedirectionparalleltogravity,k,thenwecall
theparallel,orperpendicular,l,,⊥component.
93
94
1
0.6||C
0.2
−0.201
0.6EllC0.2
||,Sph||,Ell1
(a)0.6⊥C
0.2
−0.26040200r,Ell⊥||,Ell1
(c)0.6SphC0.2
elationscorrSpatial9.9.1
,Sph⊥,Ell⊥
(b)
604020r⊥,Sph||,Sph
(d)
−0.20204060−0.20204060
rrFigure9.1:Thefiguresshowtheparallel(a)andperpendicular⊥(b)componentsof
theSCVFforellipsoidsandspheres.Figures(c)and(d)comparetheparallelandper-
pendicularcomponentsforellipsoidsandspheres,respectively.TheReynoldsnumberis
Ω×ΨΦ−),thespheresradiusEEfjT=Ψ.ΦΨandtheellipsoidaspect-ratioisΔe=Φ.(/Ψ.+.
9.1.1Changeinthevolumefraction
Infigure9.1,wepresentthespatialcorrelationsofvelocitiesforellipsoidsandspheres.
Figure9.1showsthecomparisonbetweentheparallel(a)andperpendicular(b)compon-
entsforspheresandellipsoids.Infigures(a)and(b)thecomponentsforspheresshowa
muchfasterrelaxationthanellipsoids.Figures(c)and(d)exhibittheanisotropy,charac-
teristictothesedimentationprocess,withaslowerdecayoftheparallelcomponentofthe
velocityautocorrelationfuntion.Thisanisotropyispresentinbothspheres,(Nicolaiand
Guazelli(1995),Segre´et.al.(1997),H¨ofler(2000))andellipsoids.
FluctuationselocityV
95
WepresenttheSCVFfortheparallel()andperpendicular(⊥)componentsfig.9.2for
ΦVspheres=Φ.(a,b)ΦΩ,Φ.andΦ(,Φ.Φ1,ellipsoidsΦ.Ψ+.(c,d)Theanisotropcorrespondingytobetweenfourtherepresentaticomponentsvesvisalsoolumepresentfractionsas
thevolumefractionΦVincreasesasisshowninfig.(a)and(b).
eThexponentialcomponentdecay,ofas,the||≈SVCFSkpΣfor−z/ξspheres,heS),(see(Nicolaifigureand9.2(a),Guazelliapproximately(1995),Segrfolloe´et.wsal.an
(1997),H¨ofler(2000)).Ontheotherhand,the⊥component(seefigure9.2(b))shows
avaluerapidofinitialthedecaycorrelationinarelength,gionξ⊥of,heSdifinferentthenegsystem.ativevSegralues.e´et.Thisal.(1997)minimummeasureddefinesthethe
0/(−the(dependence)oneξof,heSthe=ΨΨNcorrelationΦ−(/0,lengthwhereinNisthethe(⊥)spherecomponentradiusas(inξ⊥our,heS=notationΩ0NΦN=,EEfand)andfor
fraction.olumevtheΦ
InordertomakeoursimulationscomparablewiththeexperimentalresultsofSegre´et.al.
(1997)andalsowithprevioussimulations,H¨ofler(2000),weuseasystemsizeofsquared
basewithasideΨ((andheightΨ)ΦandavolumefractionofΦV=Φ.Φ´.Segre´et.
al.(1997)showthatthecorrelationlengthoftheperpendicularcomponent(⊥)becomes
ξ⊥,heS≈0´NforΦV=Φ.Φ).Inoursimulations,wefindacorrelationlengthforthe
equivalentspheresoftheorderofξ⊥,heS≈01N.
Inandthecaseperpendicularfor(d)ellipsoidsthecomponents,correlationweseealengthlarger(fig.value9.2),ofwiththeregardcorrelationtothelengthparallelinthe(c)
parallelcomponentξ⊥,heS≈10Nwhereastheperpendicularcomponentdoesnotshowan
ference.difappreciable
9.1.2Collapsingofthespatialcorrelations
Figure9.3(a)and(b)showthe−(/0collapsingoftheSCVFforspheres,inbothcomponents,
wscalingorksquitethewell,distanceandwithweEEfconsiderΦVitasnotewasworthproposedythatitbyisSevgralide´et.foral.changes(1997).ofThethevcollapseolume
fractionbyupto60times.Thecorrelationlengthsthatwefoundare:
ξ⊥,heS=Ω2EEfΦV−(/0;ξ,heS=Ψ´EEfΦV−(/0
whichdoesnotreallydifferfromtheresultsofSegre´et.al.(1997).
(9.2)
96
10.75
0.5Sph,||C0.25
0010.750.5Ell,||C0.25
0
40
(a)
0.0020.0040.80.0200.120
0.4⊥Sph,C0
80120160200−0.40
r)1.20.0020.0040.0200.1200.8(c)⊥Ell,C0.4
0
corrSpatial9.9.1elations
(b)
4016012080r(d)
0.0020.0040.0200.120
0.0020.0040.0200.120
0408012016020004080120160
rrFigure9.2:Spatialcorrelationsfunctionsintheparallel(a,c)andperpendicular(b,d)
componentsoftheSCVFforellipsoidsandspheres,withchangesofthevolumefraction.
TheReynoldsnumberisΩ×ΨΦ−),thespheresradiusEEfjT=Ψ.ΦΨandtheellipsoid
aspect-ratioΔe=Φ.(/Ψ.+.
Intheellipsoidcase(seefigure9.3),wepresenttheSCVFfortheparallel(c)andperpen-
dicular(d)component,respectively.Thecollapsealsoworkswellinthiscase.Thevalues
forthecorrelationlengtharethefollowing:
ξ⊥,Eaa=Ω)EEfΦV−(/0;ξ,Eaa=ΨΦEEfΦV−(/0(9.3)
Thecorrelationlengthforellipsoids,inbothcomponents,issmallerthanforspheres.
elocityVFluctuations
(a)
1.20.0020.0040.0200.1200.8⊥Sph,0.4C0
(b)
0.0020.0040.0200.120
1.20.0020.0020.0040.0040.0200.02010.1200.1200.8(b)(a)0.75⊥Sph,||Sph,0.40.5CC0.250002040−0.40204060
−1/3−1/3r/(ReqΦV)r/(ReqΦV)
1.20.0020.0020.0040.0040.0200.02010.1200.1200.8(d)(c)0.75⊥CEll,||0.5CEll,0.4
0.2500010203040−0.402040
r/(ReqΦV−1/3)r/(ReqΦV−1/3)
Figure9.3:Collapsingofthespatialcorrelationsfunctionfordatainfig.1.Ω.
−0.404020r/(ReqΦV−1/3)
1.20.0020.0040.0200.1200.8(c)⊥Ell,0.4C
0
80604020r/(ReqΦV−1/3)
0.0020.0040.0200.120(d)
97
Theamplitudeintheparallel()andperpendicular(⊥)componentsofthevelocityfluc-
tuations(seechapter+eqs.+.Ψand+.Ω),ispresentedinfigure9.4.Thefiguresarepresen-
ted(in/0alog-logscale.ForΦ.ΦΦ)≤ΦV≤Φ.Φ0,thevelocityfluctuationsgrowlinearlyas
≈ΦV(straightlinesuperimposedondata),asforspheresaswellasforellipsoids(Segre´
(1997)).al.et.Forlargervolumefractions(ΦV>Φ.Φ0),thefluctuationsarereducedinbothcomponents,
forspheresandforellipsoids.Thedecreaseinthevelocityfluctuationsasthevolume
fractioncontainerhasincreasesafixedvcouldolumebeeandxplainedthebyparticlethegroencounterswthofaretheaparticledissipativeencounters,processinsincenature.the
Thereforethevelocityfluctuationstendtoreduce(Kalthoffet.al.(1996)).
Itwasmentionedinchapter+above,thatthevelocityfluctuationscomponentsforspheres
aremuchlargerthanforellipsoids.Theappearanceofrotationsaroundtheellipsoid
98
010−110>2⊥Vδ>,<2||Vδ<−210−310
−1−21010ΦV010−110>2⊥Vδ2V>,<||10−2
δ<
−310
Sphδ. ⊥ Sphδ ||−110>2⊥Vδ>,<−2102||Vδ<−310
9.9.2Changeofthecontainersize
. δδ⊥ Ellip Ellip
||
−1−21010ΦV Sphδ. ⊥. δδ|| Ellip Sph
⊥ Ellipδ ||
10−2ΦV10−1
Figure9.4:Thetoppicturespresentthevelocityfluctuationsforspheresandellipsoidsin
theparallel()andperpendicular(⊥)componentsasafunctionofthevolumefraction,
inalog-logscale.Thebottompicturecomparestheresultsforbothkindsofparticlesand
components.TheReynoldsnumberisΩ×ΨΦ−),thespheresradiusEEfjT=Ψ.ΦΨandthe
ellipsoidaspect-ratioΔe=Φ.(/Ψ.+.
centerofmass,impliesaworkagainstthefluid,thenthedissipationofenergyispresent
nowfortranslationalandrotationaldegreesoffreedom.Therefore,thedecreaseofthe
velocityismoredramaticforellipsoidsthanspheres.
9.2Changeofthecontainersize
InfixedtheprecontainervioussidesectionofΨ0+weewherexaminedthethecharacteristicsystemasthecorrelationvolumelengthfractionwasfound,increaseseqs.with9.2a
9.3.andNowweturntotheanalysisoftheeffectsofvariationsinthecontainersizeonthevelocity
FluctuationselocityV
1(a)
0.6Ell,||C0.2
−0.220100r1(c)
0.6Sph,||C0.2
44881132176
0.6⊥Ell,C0.2
−0.24030044881132176
0.6⊥Sph,C0.2
(b)
10(d)
20r
4488132176
40304488132176
99
−0.20204060−0.2010203040
rrFigurecomponents9.5:ofSpatialthevelocitycorrelationfluctuationsfunctionsforfortheellipsoidsparallel(a,b)and(a,c)andspheres(c,d)perpendicularasa⊥function(b,d)
ofthecontainerside.TheReynoldsnumberisΩ×ΨΦ−),thespheresradiusEEfjT=Ψ.ΦΨ
andtheellipsoidaspect-ratioΔe=Φ.(/Ψ.+.
fluctuations,asexaminedintheworkby(Segre´et.al.(1997)andH¨ofler(2000)).Weuse
asmallcontainersize(closetothecharacteristiccorrelationlength),inordertoinvestigate
thesizeeffectsonthefluctuations.
Infigure9.5,weshowtheSCVFforspheres(a,b)andellipsoids(c,d)asthecontainer
sizeisincreased.Thecorrelationlengthξ⊥,heSforspheresandellipsoidsdecreasesin
bothcomponentsasthecontainerincreases.However,thedecayforspheresislargerthan
thedecayforellipsoidsintheparallelcomponent.Theperpendicularcomponent,onthe
otherhand,doesnotdisplayanydifference.
W9.6).ealsoFormeasurespherestheandpairellipsoidscorrelationwefindfunctionintheaspairthecontainercorrelationsideforisallchangedcontainer(seesizes,figurea
characteristiclengthoftheorder≈Ω,followedbyamonotonicdecaythatincreaseswith
thecontainerside(seefigure9.6(a)and(b)).Itisinterestingtopointoutthattheratioof
100
(a)
9.9.2Changeofthecontainersize
1761328844(b)
2017617613213268888164444(b)5(a)124EllSphg(r)g(r)38241002.557.51012.5002.557.51012.5
rr617613258844(c)4Sph3g(r)210012345
rFigure9.6:Paircorrelationfunctionforspheres(a),andellipsoids(b)andtheratioofthe
(c).ellipsoidstospheres
thecontainerpairsidecorrelationΨ0+.forΨ´Ω(seespheres9.6to(c)).thatofThisthepeakellipsoidsrevealsemuchxhibitslarhighergerdensitypeakforthefluctuationslarger
forspheresthanforellipsoids.Thebehaviorofthepaircorrelationfunctionsresemble
thepaircorrelationfunctionforliquids,wherethepositionsofneighboringmoleculesare
stronglycorrelated,leadingtoamodulationofthepaircorrelationfunctions(Barratand
Hansen(2003)),whichisverysimilartothatpresentedinfigure9.6(a)and(b).
Infromorderthetoinvcorrelationestigatelength,sizeefasinfectstheinwtheorkvofSeelocitygre´et.al.fluctuations,(1997).weTheundertakresultsearevariationspresent
infigure9.7forspheres(dashdottedline)andellipsoids(dashcontinuousline).The
containersidearenormalizedbyA/ΣEEfΦ−(/0).ThevelocityfluctuationsσδK⊥,/ih>
(Sepresentgre´et.anal.initial(1997)transitionandHre¨oflergion,(2000)),whichhavebetweenastrongΩΦ≤A/dependenceΣEEfΦ−(on/0)the≤ΨΦΦcontainer,aftersideit,
thespheressimulationshowadatasimilararebehaviorindependent,butofwiththeasmallercontainerovside.erallvInaluegeneral,fortheellipsoids.ellipsoidsTheratioand
oftheparallelvelocityfluctuationtotheperpendicular⊥component,forspheresand
elocityVFluctuations
1.2
0.8>s/v||Vδ<0.4
0.4
>s/v⊥Vδ<0.2
101
EllipEllipSphSph02060L/(RΦ100−1/314018004080L/(RΦ−1/3)120160
eqeqFigure9.7:Theleftgraphicshowtheparallelcomponentofvelocityfluctuationsasthe
numbercontainerisΩside×isΨΦ−),changed.theThespheresrightradiuspictureEEfshojTws=Ψthe.ΦΨvanderticalthecomponent.ellipsoidTheaspect-ratioReynoldsis
Δe=Φ.(/Ψ.+.
ellipsoidsis≈Ω.),inagreementwithSegre´et.al.(1997).
Thisequalvalueforbothkindofparticles,revealsthattheanisotropicbehavioronthe
velocityfluctuationcomponentsareindependentontheparticleshape.Thesymmetry
breakinginducedbygravityactsequallyonspheresandellipsoids.
Asmightisdiverdiscussedgewithinchapterincreasing1andbycontainerCaflishsize.andOnLuktheeother(1985),hand,theevelocityxperiments,fluctuationssimula-
Htions¨oflerand(2000),theoryitsec.isarΨ.+guedhavethatfoundsystems,noevidenceboundedforbysuchwdialls,verdogence.notshoInawapreviouscomparablework,
scalingofvelocityfluctuationsbutasaturation,ifthesmallestextensionofthecontainer
exceedsacriticalsize,andthenthedifficultytofindauniquescalinglaw.Inoursimula-
tions,thevariationsofthecontainersize,weremadebychangingtheentiresquaredbase.
Thefluctuationsresults,fig.neither9.7for(a)andspheres(b),nordon’tellipsoids,presenteandvidencebehaveforreallythedivcloseergencetotheoftheresultsvgielocityven
bySegre´et.al.(1997).
9.3ConclusionsandOutlook
WsmalleRestudiedynoldsthevnumberariationΩof×ΨΦthe−).Itcontainerwasfoundsizeforthatthespheresspatialandcorrelationsellipsoidsofthesedimentingverticalat
velocityforellipsoidsshowamuchslowerdecayastheperpendicularcomponent.The
equivalentspheresystemreproducesthesameanisotropy,thismatchingrathercloselyto
theresultsofSegre´et.al.(1997).
ThecollapsingemployedinthespatialcorrelationsforΦV≤Φ.Ψworksquitewellfor
102
ConclusionsandOutlook9.9.3
bothspheresandellipsoids,fig.9.3and9.1.Thecorrelationlengthforellipsoidshavea
smallervaluethanforspheres,eq.9.2and9.3.
Thevelocityfluctuations,forbothkindsofparticles,alsorevealtheanisotropypresent
inbyusedtransformationcollapseThecorrelations.spatialthe
inthespatialcorrelations.Thecollapsetransformationusedby
ΦV≤fluctuationsΦ.Ψ,agreesdecrease.quiteItiswellimportantwithourtodata,remark,fig.that9.4.thevAfterelocityΦV
are
much
gerlar
as
for
Itisimportant
ellipsoids.
to
remark,
that
the
velocity
Se>grΦ.e´Ψ,et.allal.thev(1997),elocityat
spheresforfluctuations
fluctuations
for
spheres
10Chapter
Conclusion
Theaimofthisthesisisthestudyofsedimentationofoblateellipsoidsusinganumerical
oblatesimulationellipsoidtechniqueatlowH¨andoflerhighandReSchwynoldsarzernumber(2000),andwhichmanyisoblateapplyedtoellipsoidstheatcaselowofandone
moderateReynoldsnumber,inthreedimensions.
OblateOne10.1ellipsoid
Themotionofapieceofpaperoraleaf,asitfallstotheground,isanoldandunsolved
probleminPhysics.Maxwell,HelmholtzandKelvinarejustsomewhohavestudiedthis
problem.Recentexperiments(Fieldet.al.(1997)andBelmonteet.al.(1998))and
simplifiedmodelsMahadevan(1996),confirmthatthemotionoffallingobjectsisstillfar
understood.beingfrom
Inourworkthefallingobjectsareconsideredaveryflatoblateellipsoid,suchasleavesor
asheetofpaper,settlinginafluid,inathreedimensionalcontainer.Wefoundthreebasic
regimesforthedynamicsofthesystem(steady-falling,oscillatory-periodic,andchaotic).
Thesteady-fallingexhibitsasimilarphysicalbehaviourasobservedexperimentallyby
Fieldet.al.(1997)andBelmonteet.al.(1998).Wehavecharacterizedthedynamics
ofthesteady-fallingregimewhenthekinematicviscosity,droppingheight,andoblate’s
aspect-ratioarechanged.Someconclusionscanbedrawnfromthispartofthework.This
regimeispresentforsmallvaluesofI≈Φ.)−Ψ,ES≈ΨΦΦandisshowninfig.5.1-5.4.
TheperiodicbehaviourinoursimulationsisfoundforES∼(ΦΦandsmallaspect-ratios
ΣΔe≤Φ.Ψ).Theverticalorientation,Θoscillateswithdoubletheperiodofoscillationof
theverticalvelocityilandatthesameperiodofthehorizontalvelocityik.Thisperiodic
motionhasalsobeenobservedexperimentallybyBelmonteet.al.(1998),showingthat
correct.essentiallyaresimulationsour
Wequalitatifindvethatouragreementresultswithinthethecaseofsimplifiedthesteady-fmodelallingproposedandbyoscillatory(Mahadevanphases,(1996)).areingood
103
104
sedimentationellipsoidsMany10.10.2
Thechaoticbehaviourispresentforlargeraspect-ratios(Δe≥Φ.´)andintheentirerange
ofReynoldsnumbersusedinthiswork.Theseparationbetweenthespatialtrajectories
ofthefallingoblateellipsoiddivergesforsmallvariationsintheinitialorientationΘd,
andgrowsexponentiallyintime.ThevaluefoundfortheLyapunovexponentisλ=
Φ.Φ)Ω±Φ.ΦΦ).Itisworthwhiletopointoutthatwegiveaquantitativemeasureofthe
sensitivitytosmallchangesintheinitialstateofthesystem.
Forthesteady-fallingandoscillatoryregimeweobtainasimilaritylaw,whichisadirect
consequenceoftheinvarianceoftheReynoldsandFroudenumbers.Also,thesimilarity
expressestheindependenceofthephysicalresultsofthegridsize,whichisagoodtest
forthedynamicsofthesetworegimes.
Weconstructaphasediagramthatshowsthreewell-defineddynamicregionsasisalso
shownbyFieldet.al.(1997).Thedifferencewiththeabovereferenceisthatthechaotic
behaviourisassociatedwiththetransitiontochaosthroughintermittencywhichisnot
seeninoursimulations.Thephasediagramisindependentoftheinitialorientation.
Thetransitionforsteady-fallingtooscillatoryandthetransitionfromsteady-fallingto
chaoticregimecanbeunderstoodassecondandfirstorderphase,respectivelyandthe
characteristictransienttimeanditsinversebeingtheorderparameter,respectively.
sedimentationellipsoidsMany10.2
Wehavesimulatedthesedimentationofoblateellipsoidsatsmallvolumefraction(ΦV≤
Φ.Ω)andsmallReynoldsnumber(ES≈ΨΦ−)).Wehavefoundthatatintermediatevolume
fractionthesettlingvelocityexhibitsalocalmaximumwhichtoourknowledgehasnever
literature.theinreportedbeenWealsopresentdataatmoderateReynoldsnumber(ES≈0)forthesedimentationve-
locityofoblateellipsoidswichfollowsamonotonicbehaviourasthevolumefraction
ΦVisincreased.AsinthecaseoflowReynoldsnumbertheellipsoidshaveasmaller
sedimentationvelocitythantheequivalentspheres.Thedataforellipsoidsandspheres
followtheRichardson-Zakilaw(1954)withexponents(cEaaTe≈´.Ω,ES=ΨΦ−))and
(c<eS≈(.Φ,ES=0)respectively.
Inaddition,thelocalmaximum,atlowReynoldsnumber,inthevelocitycanberelated
tothenon-monotonicbehaviouroftheverticalorientationoftheellipsoidsalonggravity,
andcanbeexplainedbythe“cluster”formation.Thisnon-monotonicbehaviourisalso
foundinfiber-likesuspensionsHerzhaftandGuazzelli(1999).AtmoderateESthereis
alsoalargeralignmentofellipsoidswithgravity,comparedtothosewithsmallReyn-
oldsnumber.ThealignmentwithgravityispresentalsoatmoderateReynoldsnumber,
whichisinagreementwiththeorientationalbehaviourofasingleellipsoidFonsecaand
2004).((1)HerrmannAtlowReynoldsnumbertheorientationalorderparameterΨvanishesaroundΦV≈Φ.Φ1
fig.7.7.AsΦVdecreasestheorientationalalignmentwithgravityincreases.Forlow
ReynoldsnumberinthelimitΦV→Φasingleellipsoidalignswithgravity.The
Conclusion
105
alignmentwithgravityisadistinctivefeatureofthesteady-stateregimeforasingleob-
lateellipsoidasreportedinreferencesFonsecaandHerrmann((1)2004)andGaldiet.
al.(2001).Thevanishingoftheorderparameter,atmoderateES,isslightlyshifted
(ΦV≈Φ.Ψ)totherightastheReynoldsnumberincreases(seefig7.12,bottom).All
thesimulationsinthisworkarelocatedinthesteady-fallingphaseforasingleoblate
ellipsoid.
difThefusidifvefusionbehaofviouroblateinbothellipsoidscomponentsin(parallelsedimentationandwasperpendicular),studied.Wehawhichveisfoundacompletelynon-
newandnotreportedintheliterature.Ourcomparisonwiththeequivalentspheresystem
tonon-difellipsoidsfusiveshoprocesswsthatfortheretheisaparallelsimpledifcomponents.fusiveThisprocessresultfortheregardingperpendicularthediffusiandvae
behaviourinspheresagreeswiththeworkof(Rouyeret.al.1999)and(Migueland
2001).-SatorrasastorP
Furthermore,thebehaviourforellipsoidsandsphereswasinvestigatedastheparticle
density,kinematicsviscosityandellipsoidaspect-ratioorsphereradiiwerechanged.It
wasfoundthattheincrementoftheinertialforces,bymeansofthegrowthinparticle
densityorthedecreasinginthekinematicsviscosity,reducesthepresenceofthediffusive
behaviour.Whenthesphereradiiarechanged,wecouldobserveasimilarbehaviour:as
thesphereradiusisincreasedtheinertiagrowsandthusalsotheparticleM.S.D..
TheverticalcomponentoftheM.S.D.passesfromthenon-diffusivebehaviourtothe
esimplexponentdifαfusiforverenon-difgimefusiasvetheregimesaspect-ratiochangesforincreases.(α=FΩ.orΩ)theflattenedparallelellipsoidscomponent,to(αthe=
spheres.)(.Ψ
Last,wefoundasimilaritylawthatcollapsequitewellthediffusionprocessanditisvalid
numbers.ynoldsResmallat
Westudiedthevariationofthecontainersizeforspheresandellipsoidssedimentingat
smallReynoldsnumberΩ×ΨΦ−).Itwasfoundthatthespatialcorrelationsoftheparallel
velocityforellipsoidsshowasmallerdecayastheperpendicularcomponent.Theequi-
valentspheressystemreproducesthesameanisotropy,thismatchingrathercloselytothe
resultsofSegre´et.al.(1997).
ThecollapsingemployedinthespatialcorrelationsforΦV≤Φ.Ψworksquitewellfor
spheresandellipsoids.Thecorrelationlengthforellipsoidshasasmallervaluethanfor
spheres.
Thevelocityfluctuationsforellipsoidsrevealtheanisotropypresentinthespatialcorrela-
welltions.withTheourcollapsedata.AfterΦtransformationV>Φ.Ψ,usedallthebyvSegrelocitye´et.al.fluctuations(1997),atΦVdecreases.≤Φ.ΨIt,isagreesimportantquite
toremark,thatthevelocityfluctuationsforspheresaremuchlargerasforellipsoids.
106
10.3Outlook
Outlook10.10.3
manDespiteyopenthefactsproblems.thatfallingUsingthisbodiesmodelhaveitbeenisnowstudiedpossiblefortosuchastudylongthetime,theresedimentationarestillof
differenttypesofparticlesandthestructureofthefluidsurroundingthem.Futurework
couldbeaddressedinseveraldirections:
•
Thexperimentseillmarth(Wet.al.(1964),Belmonteet.al.(1998)andellyKandWu(1997))haveconfirmed,thatthepresenceofvorticesisfundamental,asthe
objectsfallorriseinafluid.Vortexgenerationissuchanimportantpartoffluid
dynamicsthatacompletetheorymustbetakenintoaccountinordertounderstand
theroleofthefluidinthemotionoffallingobjects.Then,anaturalfollowingwork
istoundertakeasystematicresearchaboutthevelocityandpressurefieldsinthe
dynamicsoffallingobjects.Thisisataskthatouralgorithmisabletogive.
•Theautorotationortheangularmotionthattheflatobjectexecutesasitfall,is
animportantresearchinalargenumberoflaboratorystudies.Theeffortscome
animportantresearchinalargenumberoflaboratorystudies.Theeffortscome
mainlybypracticalconsiderationsinmeteorologyastheformationofhailstones;
thedynamicsofaircraftafteritstall,etc.Theautorotationhasbeenfoundinsome
experiments(Fieldet.al.(1997)orMahadevanet.al.(1999))forveryflatobjects.
Ofparticularnoteistheflatobjectcanoscillateseveraltimesasitfell,increasingits
amplitudeineachoscillationuntilitcompletelyturnedover.Thesimulationofthis
typeofmotionrequiresthatthethicknessobject(smallerellipsoiddiameter)hasto
be,atleastoftheorderofthegridsize.Therefore,thelargerobjectdiameter(small
aspect-ratio)andthecontainersizewillimplyahugenumberofgridpointsinthe
simulationfortheinvestigationofthismotion.Inordertocarryoutthesimulation
ofautorotation,theaboveconditionsmustdemandahighcomputationaleffort.
Thesimulationtechniqueusedinthisthesisinconnectionwiththeparallelized
algorithmversioncanovercomethesedifficulties.
•Inthedynamicsofonefallingflatobjectwefoundasimilaritylawforthesteady-
fallingandoscillatoryphases(Sections).Ψand).Ω).Theexperimentaldatasup-
portingtheserelationswouldbeveryimportant.
•Wefoundanon-monotonicbehaviourfortheoblateellipsoidsettlingvelocityas
thevolumefractionincreases.Alsotheincreasingellipsoidalignswithgravityas
thevolumefractionincreases.Alsotheincreasingellipsoidalignswithgravityas
thevolumefractiondecreases.Finallyinthedynamicsofmanyellipsoidssedi-
mentation,wefoundananomalousdiffusionbehaviourfortheparallelcomponent
togravity.Uptonow,wedon’tknowanexperimental,simulationortheoretical
resultrelatedwiththissettlinglaworanomalousdiffusion,andanexperimental
workratifyingthesebehavioursisnecessary.
•Suspensionsinnatureandindustrygenerallyinvolvethemixturesofparticlesof
differenttypes,shapesandsizes(e.g.,oblateellipsoids,prolateellipsoidsand
differenttypes,shapesandsizes(e.g.,oblateellipsoids,prolateellipsoidsand
spheres).Thebidispersesuspensionsarenormallymadeoftwodifferentsize
sphericalparticles,butnotalikeshaped.Inthestatisticalphysicsofbidisperse
Conclusion
107
hard-spheresmixturesisknown(AsakuraandOosawa(1954))the“depletioninter-
action”,whichitistheeffectofthelargeparticlestogetherincreasetheavailable
volume,thereforetheentropy,
thetodueinteraction”pletion
important
task
for
accomplish.
Then,particles.smallthefor
shape
and
not
only
to
olumev
studythe“de-thisof
ferencedif
is
another
108
10.10.3
Outlook
encesRefer
AckersonB.J.,andClarkN.A.(1984).Shear-inducedpartialtranslationalorderingof
acolloidalsolid.Phys.Rev.A.,30,906.
AdamsM.andFradenS.(1998).Phasebehaviorofmixturesofrods(tobaccomosaic
virus)andspheres(polyethyleneoxide,bovineserumalbumin).Biophys.J.,74,
669.AdrianR.J.(1991).Particle-imagingtechniquesforexperimentalfluidmechanics.
Annu.Rev.fluidMech.23,261.
AllenM.P.andTilsdesleyD.J.(1987).Computersimulationsofliquids.Clarendon
Press,Oxford,1987.
ArefH.andJonesS.W.(1993).Chaoticmotionofasolidthroughidealfluid.Phys.
3026.,5A.FluidsAsakuraS.andOosawaF.(1954).Oninteractionbetweentwobodiesimmersedina
solutionofmacromolecules.J.Chem.Phys.22,1255.
BallentsL.,MarchettiM.C.andRadzihovskyL.(1998).Nonequilibriumsteadystates
ofdrivenperiodicmedia.Phys.Rev.B.57,7705.
Barrat,J.L.andHansen,J.P.(2003).Basicconceptsforsimpleandcomplexfluids.
CambridgeUniversityPress,Cambridge,2003.
BasuA.,BhattacharjeeJ.K.andRamaswamy,S.(1999).Meanmagneticfieldand
noisecross-correlationinmagnetohydrodynamicturbulence:resultsfromaone-
dimensionalmodel.Eur.Phys.J.9,735.
BatchelorG.K(1970).Thestresssysteminasuspensionofforce-freeparticles.J.
FluidMech.41,545.
BatchelorG.K.(1970).Slender-bodytheoryforparticlesofarbitrarycross-sectionin
Stokesflow.J.FluidMech.44,419.
BatchelorG.K.(1972).SedimentationinaDiluteDispersionofSpheres.J.Fluid
Mech.52,part2,245.
BatchelorG.K.(1982).Sedimentationinadilutepolydispersesystemeofinteracting
spheres.Part1.Generaltheory.J.fluidMech.119,379.
BatchelorG.K.andJanseVanRensburgW.(1986).Structureformationinbidisperse
sedimentation.J.fluidMech.166,379.
BauerM.,HabipS.,HeD.R.andMartiensenW.(1992).Newtypeofintermittencyin
discontinousmaps.Phys.Rev.Lett..68,1625.
109
110
BeenakkerC.W.J.,VanSaarloosWandMazur,P.(1984).Many-SphereHydrodynamic
InteractionsIII.TheInfluenceofaPlaneWall.physicaA..127,451.
BelmonteA.,EisenbergH.andMosesE.(1998).FromFluttertoTumble:Inertial
DragandFroudeSimilarityinFallingPaper.Nature.81,345.
BerneB.andPecoraR.(1990).DynamicLightScatteringwhitapplicationstoChem-
istry,BiologyandPhysics.Malabar,Fl:Krieger.
BibenT.andHansenJ.p.(1991).Phaseseparationofasymmetricbinaryhard-sphere
fluids.Phys.Rev.Lett..66,2251.
BibetteJ.(1991).Depletioninteractionsandfractionatedcrystallizationforpolydis-
perseemulsionpurification.J.ColloidinterfaceSci..147,474.
BlakeJ.(1971).Anoteontheimagesystemforastokesletinano-slipboundary.Proc.
Camb.Phil.Soc..71,303.
BlancR.andGuyonE.(1991).Thephysicsofsedimentation.LaRecherche.22,866.
BradyJ.F.andBossisG.(1985).Therheologyofconcentratedsuspensionsofspheres
insimpleshearflowbynumericalsimulation.J.FluidMech.155,105.
BrennerH.(1961).Theslowmotionofaspherethroughaviscousfluidtowardsaplane
surface.Chem.Eng.Sci.16,242.
BrennerM.P.(1999).Screeningmechanismsinsedimentation.J.PhysFluids.11,4,
754.CowanM.L.,PageJ.H.andWeitzD.A(2000).Velocityfluctuationsinfluidizedsus-
pensionsprobedbyultrasoniccorrelationspectroscopy.Phys.Rev.Lett.85(2),453.
ChaikinP.M.andLubenskyT.C.(1998).PrinciplesofCondensedMatterPhysics.New
CambridgeuniversityPress.
ChandrasekharS.(1981).HydrodynamicandHydromagneticStability.NewYork:
.verDoChuX.L.,Nikolov.A.D.andWasanD.T(1996).Effectsofinterparticleinteractions
onstabilityaggregationandsedimentationincolloidalsuspensions.Chem.Eng.
123.,150.Comm.CaflishR.E.andLukeJ.H.C.(1985).Varianceinthesedimentationspeedofasus-
pension.Phys.Fluids.28(3),759.
DasD.andBarmaM.(2000).ParticlesSlidingonaFluctuatingSurface:PhaseSepar-
ationandPowerLaws.Phys.Rev.Lett.85,1602.
DavisR.H.andHassenM.A.(1988).SpreadingoftheInterfaceattheTopofaSlightly
PolydisperseSedimentingSuspension.J.FluidMech..196,107.
DeGrootR.H.andMazurP.(1984).Non-equilibriumthermodynamics.NewYork:
.verDoDebyeP.andH¨ukelE.(1923).Thetheoryofelectrolytes.I.Loweringoffreezingpoint
andrelatedphenomena.Z.Phys.24,185.
EinsteinA.(1906).InvestigatonsonthetheoryoftheBrownianmovement.Ann.
Phys..19,289.
yBibliograph
111
ErtasD.andKardarM.(1992).Dynamicrougheningofdirectedlines.Phys.Rev.
929.,69Lett.EvansM.R.,KafriY.,KoduvelyH.MandMukamelD.(1998).PhaseSeparationin
One-DimensionalDrivenDiffusiveSystems.Phys.Rev.Lett.80,425.
FessasY.P.andWeilandR.E...(1981).Convectivesolidssettlinginducedbyabuoyant
phaseAIChEJ..27,588.
FieldS.,KlausM.,MooreM.andNoriF.(1997).Chaoticdynamicsoffallingdisks.
Nature.388,252.
FogelsonA.L.andPeskinC.S.(1988).Afastnumericalmethodforsolvingthethree-
dimensionalStokesequationsinthepresenceofsuspendedparticles.Journalof
50.,79PhysicsComputationalFonsecaF.andHerrmannH.(1)(2004).SimulationoftheSedimentationofaFalling
OblateEllipsoid.acceptedforpublicationinPhys.A.
FonsecaF.andHerrmannH.(2)(2004).Sedimentationofoblateellipsoidsatlowand
moderateReynoldsnumber.acceptedforpublicationinPhys.A..
ForsterD.(1980).HydrodynamicFluctuations,BrokenSymmetryandCorrelation
Functions.Bejamin/Cummings,Reading,MA,1975.
ForsterD.,NelsonD.R.andStephenM.J.(1977).Large-distanceandlong-timeprop-
ertiesofarandomlystirredfluid.Phys.Rev.A..16,732.
GaldiG.P.,PokornyM.,VaidyaA.,JosephD.D.andFengJ.(2001).Orientationof
symmetricbodiesfallinginasecond-orderliquidatnonzeroReynoldsnumber.J.
Math.FluidMech..3,183.
GoldsteinH.,PooleC.andSafkoD.J.(2002).ClassicalMechanics.AddysonWesley,
SanFrancisco,2003.
GrinsteinG.,LeeD.H.andSachdevS.(1990).Conservationlaws,anisotropy,and
“self-organizedcriticality”innoisynonequilibriumsystems.Phys.Rev.Lett.,64,
1990.HalperinB.I.andHohenbergP.C.(1977).Theoryofdynamiccriticalphenomena.Rev.
435.,49PhysMod.HamJ.M.andHomsyG.M.(1988)..Int.J.multiphaseFlow.14,533.
HappelJ.andBrennerH.(1965).LowReynoldsNumberHydrodynamics.Englewood
Cliffs,NJ:prenticeHall,1965.
Herzhaft,B.andGuazzelli,E.(1999).J.FluidMech..384,133.
HoyosM.,BacriJ.P.,MartinJ.andSalin,D.(1994).Structure,density,andvelocity
fluctuationsinquasi-two-dimensionalnon-Browniansuspensionsofspheres.Phys.
3809.,6.Fluids.H¨oflerK.andSchwarzerS.(2000).Navier-Stokessimulationwithconstraintforces:
Finite-differencemethodforparticle-laddenflowsandcomplexgeometries.Phys.
Rev.E.43,761.
H¨oeflerK.(2000).SimulationandModelingofMono-andBidisperseSuspensions.
DoctoralThesis.StuttgartUniversity.
112
HuangP.Y.,HuH.H.andJosephD.D.(1998).Directsimulationofthesedimentation
ofellipticparticlesinOldroyd-Bfluids.J.FluidMech..362,297.
J´anosiI.M.,Tel.T.,WolfD.EandGallasJ.A.C.(1997).Chaoticparticledynamicsin
viscousflows:Thethree-particleStokesletproblem.Phys.Rev.E.56,2858.
JayaprakashC.,HayotF.andPanditR.(1993).Universalpropertiesofthetwo-
dimensionalKuramoto-Sivashinskyequation.Phys.Rev.Lett..71,12.
KajikawaM(1982).Observationofthefallingmotionofearlysnowflakes.J.Meteorol.
Soc.Jpn.(Suppl.)1,797.
Kalthoff,W.Schwarzer,S.Ristow,G.andHerrmann,H.(1996).Ontheapplicationof
anovelalgorithmtohydrodynamicdiffusionandvelocityfluctuationsinsediment-
ingsystems.Int.J.Mod.Phys.C7No.4,543.
KelleyErinandWuM.(1997).PathInstabilitiesofRisingAirBubblesinaHele-Shaw
Cell.Phys.Rev.Lett.79,1265.
KochD.L.andShaqfeh,E.S.G(1991).Screeninginsedimentingsuspensions.J.Fluid
275.,224h.MecKochD.L.(1994).Hydrodynamicdiffusioninasuspensionofsedimentingpoint
particleswithperiodicboundaryconditions.Phys.Fluids.6,2894.
KraichnanR.(1962).Eddyviscosityanddiffusivity:exactformulasandapproxima-
tions.Phys.Fluids.5,1374.
KuuselaE.,H¨oeflerK.andSchwarzerS.(2001).Computationofparticlesettlingspeed
andorientationdistributioninsuspensionsofprolatespheroids.J.ofEngineering
221.,41MathematicsKuuselaE.,Lahtinen,J.M.andAla-Nissila,T.(2003).Collectiveeffectsinsettlingof
spheroidsundersteady-statesedimentation.Phys.Rev.Letters.90,094502.
KuuselaE.andAla-NissilaT.(2001).Velocitycorrelationsanddiffusionduringsedi-
mentation.Phys.Rev.E.63,061505.
KynchG.J.(1952).Atheoryofsedimentation.faradaySoc.48,166.
LaddA.J.C.(1993).Dynamicalsimulationsofsedimentingspheres.Phys.Fluids
299.,5(2)A.LaddA.J.C.(1994).Numericalsimulationsofparticulatesuspensionsviaadiscretized
Boltzmanequation.Part1.Theoreticalfundation.J.FluidsMech.271,285.
LaddA.J.C.(1996).Hydrodynamicscreeninginsedimentingsuspensionsofnon-
Brownianspheres.Phys.Rev.Lett.76,1392.
LaddA.J.C.(2002).Effectsofcontainerwallsonthevelocityfluctuationsofsediment-
ingspheresPhys.Rev.Lett.88.048301-1.
LambH.(1932).Hydrodynamics.2nd.Cambridge:CambridgeUniv.Press.
LandauL.D.andLifshitzE.M.(1969).StatisticalPhysics.Reading,MA;Addison-
.yesleWLahiriR.andRamaswamyS.(1997).AreSteadilyMovingCrystalsUnstable?.Phys.
Rev.Lett.79,1150.
yBibliograph
113
LahiriR.,BarmaM.andRamaswamy,S(2000).Strongphaseseparationinamodelof
sedimentinglattices.Phys.Rev.E.61,1648.
LandauL.DandLifshitzI.M.(1959).FluidMechanics.oxford:Pergamond.
LandauL.DandLifshitzI.M.(1965).TheoryofElasticity.Oxford:Pergamond.
Langevin,P.(1908).SurlaTheorieduMouvementBrownienComptesrendus.146,
530.LeiX.,AckersonB.JandTongP.(2001).SettlingStatisticsofHardSphereParticles.
Phys.Rev.Lett.86,3300.
LeightonD.andAcrivosA.(1987).Theshear-inducedmigrationofparticlesincon-
centratedsuspensions.J.FluidMech.181,415.
LevineA.,RamaswamyS.,FreyE.andBruismaR.(1998).Screenedandunscreened
phasesinsedimentingsuspensions.Phys.Rev.Lett.81,5944.
LugtH.J.(1983).Autorotation.Annu.Rev.FluidMech.15,123.
MaS.K.(1976).ModernTheoryofCriticalPhenomena.ReadingMA:Benjamin.
MahadevanL.,ArefH.andJonesS.W.(1995).Commenton’BehaviorofaFalling
Paper’.Phys.Rev.Lett..75,1420.
Mahadevan,L.(1996).Tumblingofafallingcard.C.R.Acad.Sci.323,729.
MahadevanL.,RyuA.andSamuel,D.T.(1999).Tumblingcards.Phys.Fluids11,1.
MarchildonE.K.,ClamenandA.andGauwinW.H.(1964).Dragandoscillatorymo-
tionoffreelyfallingcylindricalparticles.Can.J.Chem.Eng.64,178.
MartinP.C.,ParodiOandPershanP.S.(1972).UnifiedHydrodynamicTheoryforCrys-
tals,LiquidCrystals,andNormalFluids.Phys.Rev.A.6,2401.
Maxwell,J.C.(1853).TheScientificPapersofJamesClerkMaxwell.Cambridgeand
DublinMath.J.9,115.
MisesVonR.(1945).TheoryofFlight.McGraw-Hill,NewYork,1945.
MiguelM.-C.andPastor-SatorrasR.(2001).Velocityfluctuationsandhydrodynamic
diffusioninsedimentation.Europhys.Lett.54(1),45.
NicolaiH.,HerzhaftB.,HinchE.J.,OgersL.andGuazzelliE.(1995).Particleve-
locityfluctuationsandhydrodynamicself-diffusionofsedimentingnon-Brownian
spheres.Phys.Fluids.7(1),12.
NicolaiH.andGuazzelliE.(1995).Effectofthevesselsizeonthehydrodynamic
diffusionofsedimentingspheres.Phys.Fluids.7(1),12.
OllaP.(1999).Asimplifiedmodelforredcelldynamicsinsmallbloodvessels.Phys.
Rev.Lett..82,453.
PaulinS.EandAckersonB.J.(1990).Observationofaphasetransitioninthesedi-
mentationvelocityofhardspheres.Phys.Rev.Lett.64,2663.
PanT.-W.,JosephD.D.,R.Bai,R.GlowinskiandV.Sarin(2002).Fluidizationof1024
spheres:simulationsandexperiments.J.FluidsMech.451,169.
PedleyT.J.andKessleyJ.O.(1992).Annu.Rev.fluidMech.24,313.
114
PerramJ.W.andRasmussenJ.(1996).Ellipsoidcontactpotential:Theoryandrelation
tooverlappotentials.Phys.Rev.E.54,6565.
PerrinJ.(1916).Atoms.OxbowPress,Amherst,MA,USA,1990.
PeyssonY.andGuazzelliE.(1999).Velocityfluctuationsinabidispersesedimenting
suspension.Phys.Fluids11,1953.
PressW.h.,FlanneryB.P.,TeukolskyS.A.andVetterlingW.T.(1992).Numerical
recipesinC.Cambridge:CambridgeUniversityPress.
PriestleyC.H.B.(1959).TurbulentTransferintheLowerAtmosphere.Chicago:Uni-
versityofChicagoPress.
PuseyP.andRamaswamyS.(1997).TheoreticalChallengesintheDynamicsofCom-
plexFluids,LecturesinaNATOAdvancedStudyInstituteSeries.1990.
QiDewei.,LuoLishi.,AravamuthanRajaandStriederWilliam(2002).LateralMigra-
tionandOrientationofEllipticalParticlesinPoiseuilleFlows.J.Statist.Phys.107,
101.RamakrishnanT.V.andYussouffM.(1979).First-principlesorder-parametertheoryof
freezing.Phys.Rev.B.19,2775.
RamaswamyS.(2001).Issuesinthestatisticalmechanicsofsteadysedimentation.
Adv.Phys.50,297.
RichardsonJ.F.andZakiW.N.(1954).SedimentationandFluidisation:PartI.Trans.
Instn.Chem.Engrs.32,35.
RouyerF.,MartinJ.andSalinD.(1999).Non-gaussiandynamicsinquasi-2dnoncol-
loidalsuspensions.Phys.Rev.lett.83,1999.
RusselW.B.,SavilleD.A.andSchowalterW.R(1989).ColloidalDispersions.Cam-
bridge:CambridgeUniversityPress
SaffmanP.G.(1975).Ontheformationofvortexrings.Stud.appl.Maths.52,115.
SchimittmannBandZiaR.K.P.(1995).PhaseTransitionsandcriticalPhenomena.
.vol.17Segre´P.E.,LiuF.,UmbanhowarP.andWeitzD.A.Aneffectivegravitationaltemper-
atureforsedimentation.Nature409,594.
Segre´P.N.,HerbolzheimerE.andChaikinP.M.(1997).Long-rangecorrelationsinsed-
imentation.Phys.Rev.Lett.79,2574.
SimhaR.A.andRamaswamyS.(1999).TravelingWavesinaDriftingFluxLattice.
Phys.Rev.Lett.83,3285.
TanabeY.andKanekoK.(1994).Behaviourofafallingpaper;reply.Phys.Rev.
1372.,7573Lett.TongP.andAckerson,B.J.(1998).Analogiesbetweencolloidalsedimentationandtur-
bulentconvectionathighPrandtlnumbers.Phys.Rev.E.58,6931.
ToryE.M.,KammelM.TandChanManFongC.F.(1992).PowderTechnol.73,219.
VietsH.andLeeD.A.(1971).MotionoffreelyfallingspheresatmoderateReynolds
numbers.A.I.A.A.Journal.232,2038.
yBibliograph
115
vonSmoluchowskIM.(1916).Threediscoursesondiffusion,Brownianmovements,
andcoagulationofcolloidparticles.PhysZeits.17,557.
WputingachmannofB.andSuspensions.SchwarzerInt.S.J.Mod.(1998).Phys.C9(5)Three-Dimensional,759.MassivelyParallelCom-
WachmannB.,SchwarzerS.andK.H¨oefler(1998).Localdraglawforsuspensions
fromparticle-scalesimulations.Int.J.Mod.Phys.C9(8),1361.
WillmarthW.,HawkN.andHarveyR.(1964).Steadyandunsteadymotionandwakes
offreelyfallingdisks.Phys.Fluids7,197.
WuX.-L.andLibchaberA.(2000).ParticleDiffusioninaQuasi-Two-Dimensional
BacterialBath.Phys.Rev.Lett.84,3017.
XueDifJ.-Z.,fusion,Herbolzheimeerdispersion,andE.,settlingRutgersofM.A.,hardspheres.RusselWPhys.B.Reandv.Lett.Chaikim69,P.M.1715.(1992).
XueJ.Z.,CrystallineHerbbolzheimerfluidizedbeds.E.,Phys.RutgersRev.M.E.A.,51,4674.RusselW.BandChaikinP.M.(1995).
116
wledgmentsAckno
II,wψouldΨandlikefortohisthankinvProf.aluableDr.supportHansJ.andHerrmannorientation,forthewithoutgreathim,opportunitythisworktowworkouldathavthee
impossible.beenDuringmyworkIhadalotofmoralsupportbymymother,>adeWcRN,shehelpedme
IalonghavethetoedistancexpressmyandingratitudeallthetoaspectsDianaofAlonso,lifethatmyaregreatmoreadvawentureayofpartnerPh,ysics.weAlso,were
alwaysside-by-sideinourlifeinGermany.
IamgratefultothemembersoftheICA1forthesupportandthecomradeship,specially
withReinmarM¨uckandStefanSchwarzer,whoguidedmeatthebeginningintheartof
simulations.IwouldliketothankT.Ihleforthephysicalandscientificcriticsconcerning
tomywork.MyspecialthankstoV.R.IyengarandF.Raischelforwrittingcorrections
tothiswork,andalsotoMarliesParsons,whosupportedmeattheICA1concerningall
administrativeaffairs.
Iofwasvfrienshiperyluckinymytolife,meetalotspeciallyofR.friendsCruz,thatA.madeMora,myA.stayinEhl,J.GermanGaribayya,greatL.Le´opez,xpierienceJ.D.
Mu˜noz,O.L.Castro,F.Alonso,J.Jovel,V.Schwaemmle,M.Hasse,L.Aguilera,O.
Pozos,M.SidriandingeneraltoallOLApeople.
Iamalsoverygratefultoallthelatinamericancommunity,hereinStuttgart,andin
specialtotheColombiancommunity,forthewonderfultimethatwehadtogetheralong
years.these
Morover,IwouldalsoliketothankR.Dielforherunderstanding,affection,generosity
andconstantsupportduringthelasttimeofmythesis.
Itionwould(DeutscheliketoFgivemygratitudeorschungsgemeinschaft)totheforprojecttheSBF404financialofthesupport.GermanResearchFounda-
Finally,IwanttoexpressmydeepestrespectandadmirationfortheGermanpeoplethat
makemepossiblelearnabitofthisgreatnation.
FrankStuttgartRodolfo14thFJuneonseca2004Fonseca
Access to the YouScribe library is required to read this work in full.
Discover the services we offer to suit all your requirements!