57 Pages
English
Gain access to the library to view online
Learn more

Singular limits and maximally continued solutions of moving boundary problems [Elektronische Ressource] / Friedrich-Matthias Lippoth

-

Gain access to the library to view online
Learn more
57 Pages
English

Description

LippSingularhaftelimitserandvmaximallyHannoconGradestinnat.uedMath.solutionsorenofHannomoErlangungvingderbDr.oundaryDiproblemsDipl.Vriedricon,der26.11.1979Fer.akulvtzur?tdesf?rDoktorMathematikNaturwissenscundnPhrer.ysigenehmigtekssertationderonGottfried-WilhelmFLeibnizh-MatthiasUnivothegebramsiintv?2010tTReferenC.t:05.02.2010Prof.alkDr.derJ.Dr.EscWhererKagorreerenPromotion:t:Prof.solutionsAbstractmoWwhateduceproinvAgain,eoundarythemaximalconbvwergetimeofjectabstractrds:dynamicalquasistationarysystemsnotiontotinthmoeirdaryassosenseciatedcquasistationaryglobalapproofximationstestandtheappKeywlyvingthbloeseximationrethesofultscontouedaofmovingvingounbproblemsounthedarythatprobelemharacterizemoinhibitsdelingintheexistencegrosolutions.wthourofobaisvtumorasculardel.tumors.oMoreoMovber,problem,ww-up,eapprointrofreienZusammenfassungoWirL?sungenbderewheeisenBeispieldie,KaloncvglobaleergenzdabstrakterumordynamiscRandwherdenSystemeigegenL?sungihreertproblems.assoziiertenwquasistation?rendiApprovximationenerhindernunddiesegebdesendells.

Subjects

Informations

Published by
Published 01 January 2010
Reads 9
Language English

Exrait

LippSingularhaftelimitserandvmaximallyHannoconGradestinnat.uedMath.solutionsorenofHannomoErlangungvingderbDr.oundaryDiproblemsDipl.Vriedricon,der26.11.1979Fer.akulvtzur?tdesf?rDoktorMathematikNaturwissenscundnPhrer.ysigenehmigtekssertationderonGottfried-WilhelmFLeibnizh-MatthiasUnivothegebramsiintv?2010tTReferenC.t:05.02.2010Prof.alkDr.derJ.Dr.EscWhererKagorreerenPromotion:t:Prof.solutionsAbstractmoWwhateduceproinvAgain,eoundarythemaximalconbvwergetimeofjectabstractrds:dynamicalquasistationarysystemsnotiontotinthmoeirdaryassosenseciatedcquasistationaryglobalapproofximationstestandtheappKeywlyvingthbloeseximationrethesofultscontouedaofmovingvingounbproblemsounthedarythatprobelemharacterizemoinhibitsdelingintheexistencegrosolutions.wthourofobaisvtumorasculardel.tumors.oMoreoMovber,problem,ww-up,eapprointrofreienZusammenfassungoWirL?sungenbderewheeisenBeispieldie,KaloncvglobaleergenzdabstrakterumordynamiscRandwherdenSystemeigegenL?sungihreertproblems.assoziiertenwquasistation?rendiApprovximationenerhindernunddiesegebdesendells.eiFnebloAnApprowBegriendungmaxaufmeinfortgesetztenfreieseinesRandwRandwert-Wirproblem,harakterisieren,welcelcPh?nomeneheesExistenzdasonWvacundhstumiskutierenaamveaskularerTTMoumorenStichwbrte:escreieshreibt.ertproblem,Dar?bw-uperhinausquasistation?reerkl?renximationwirresulCon.ten.ts.1.Preface.2.2bIn.t.relpfulo.duction.4.344Singular30limits.in.nonlinear.dynamical.systems4.26.3.1.The.abstractcalizationssetting.and.linear.equations35.mo.p.The.................3.and........6.3.2.Quasilinear4.3systemstime...............Pro.of.ving.oundary.roblems.4.1.main.t..............................11.3.30ApplicationNotationstohthematerialtumor.mo.del..................31.Lo.in........................19.4.The.blo5w-upofsmec1hanismV = H
istheorytoftpartial.dierenphtioaInlthat,equationsnecessaryasnthofetropativrobablyalsomoapproacsthetapproiofmthispmanifold,ortanshalltparametermwathemat-generalicallydomains,toitoloundarytosingularitdescriborkeTheoremvspariousbprothecessesoutioutnelopmennature,yhasbalreadydierenbstationaryeenrstdevparameterelopofedstatedtodelbdeletheaovordinaryerysolutionextensivbloelifeandamcanultifariouselopmentheorymo.partNevgivertheless,hmanbydoproblemstheareesstillvvberyproblemshardtotoerties,treat,casesintimeparticulardescribingthoseinproblems,ywhicysi-hbinthisvolvolvthaneapproantounknooundarywnwdomainaaseasolutionpartmoofThthegeneralditheeerensptialexplainedequations.thingOneofofellthnessetosimplestofexamplesthatofsomethesemsoup,calleda'onlymcaseovingvingblobviousloundarytheproblems'ofisinthebwtheellthisunderstoeoadtomeantheorem,curvItaturemenowwconsiderThemoPrefaced1oftothel:nOneabloAnotherokspreciseforwacalledfamilytheirofInsurfacesoinwhoseenormalisvmanelotocitdisturbiyativequalsftheiremeanofcurvolvature.quanInInsuitableacojusticationordinatescedurethisgivsimplereasoning,lauwyturnsalongouttimetobbthereforeeinarelativcomplicateddevnonlineartheparabInolicofequation,wandtrosolumtionsprowillvhacorrespvaequasiaifnitetolifresult,easpanappliesinallgeneral.ecialInhdineeThidm,bunderthethis2laiswnonexistenceanaywcopnsedvstatemenexanalogousinitialthegeometrycaseshrinksxedinstating,toaaorroundderivpeoinusttwinifnitehastimeniteasspanGerhard.Htheuiskofensmowbasproblem,ablew-uptoobproyvmeane,devseet[Hau198y4].theThvingisoundaryalsoInmeanssecondniteoftimewbloww-upshallofetherstsurfaceshcurvsucature.aMucc.f.h4.2.lessshouldiseknotioned,wnalthoughinetheonlycaseoneofecialmoredel,complicatedmethosystems.ofRecenprotlydo,applyanaalbproblemsstractumfunctionaleredanalyticoviewe.hasproblembtheeenrelationsuccessfullyetappliedeentosothefullfamousandStefan'quasistationaryproblem,ximations'.soordercalledpHele-Shatwqualitativopropws,itthestillainvyeragedformallymeandropcurvaangtuderivreeoawunctionandthmodevdelstofsomeavvedascularysicaltu-titmor.gromanwth,cases,justphtocalmenoftionproacanfeeenw,yc.f.that[K2007],q[EsSi97a],a[EsSi98],tit[MaSi00],ev[Es2000].esThisasemigroupttheoryscalebasedthemethooundarydandseemsistoximatelybaestatetheerighthetelopmentoofolbnot.onlythetopartprothisvorkeeexis-intenceduceandssmoalloandthvnessconpropergenceertiestheofondinglotocalsolutionsolutions,thebstationaryutdel,alsothistotendsunderstandzero.eqisualthoughilbriuminstatesratherofsetting,theserstproblems.fNevtoertheless,spmanmoywhicquestionswhaconsidervthiseork.notsyecialetobwilleeneanswinered.inOneduction.majormanner,Aytalsothisinplace,thisIthew3anvtnottobuthanktimeprofessorofJoastuctutelage,himaEscariousherconcerningforonlyhisthesis,vterythehelpfullatsupendpmort,undergraduatebutdies.never8
4 p = f(v) ( t)>> "@ v4 v = h(v) ( t)< t
V = @ p ( t)
>> p = cH ( t)
:
v = ( t);
( t) :=@ ( t) v(0;) =
v (0) =0 0
( t) t p
v
f ( t)g
( t) V H =H(t) h f
f
Z
(t) := 1dx
( t)
R
d=dt (t) = V d
( t)
Z
d=dt (t) = f(v(t;x))dx;
( t)
f
f(v) = (v v) v0 0
c " c> 0
(2.1)denotetthencellillustratepressurestemandorkwindescribmeasureesThthemeaning,concenhoicetrationyoft,athengroutrienent,initialforandexamplewhereglucose,tdiusingorthroughwingthearetumor.e,Thetronormalanveelosscitvydelofofthelfamily.Bycompleted.thetimetheorem,at.tumorinandendencethenmeanactscurvAatureeofconsiderthethissurfaceconstantheofyNext,bositivareAdenproliferationobtedasbtermyofpiedTandis,ccuofogdomainathevistumor.tumor:w,wnrespolectivitionselyyc.f..bThinedivfunctionsvascularsandevonare(2.1)knoinwn:thethenrateofot,faconsumptionaofypicaltheouldnvingutrieneteandwhereofThroughoutcell-proliferation.ositivThebutmobdelt(2.1)[ByCh95],wusastheinconstantroInducedbcellyrateGreenspancanine[Gr1956]terpretedandth[Gr1976].sourceTheinideabalanceismatoequation.studyotumorthgroletwtholfromwththethepdescribinoinmotisoftheviewolumeoftheaTheitistheeltensionknoecienthatrelatedvcellSystemcell,econdInthewbw,are[EsSi97a].inus,inyuid,equationswhile(2.1)thethetumorergenceitselfisisolaymoThevingsetdomain,wwhoseonvoneloincitproblem:ythatelddepisoncopresenmmensucoratecewithtrationthethepressureutriengradienoundaryt.asFsourceorcesasofsink.surfacettensionccounwteractbthebinmoternalfollocellthpwillrews,sure.wCell,proliferationductionmakpesethets,cellularmatissuealsogroew,logisticfedypwithseesome[ByCh96].nletutricommeneonnptebtsy,diusion..Thturss,2theuidisdynamics:surfaceThecotumortcellstoatoreadhesivconsideredforces.asthisparticlesorkoefnotanterestedincompressi4blec 1
"
(v ;p ; )" " "
" = 0 " 0
h(v) = v > 0
"
thecaseis,sedwhximationicohSectiond4.3eorkterminhesThethegeometrictithemethescaleewheretitheiev3.1olution(2.1)ofnotiontheSectionnnotationutrienprotmetakdiesofplace.vAorksaalreadyenmenthistionedfollointotheonofpreface,denearehInugeepconaobtainrtwillofucthissomewwillorkmainistodevinotedistoandprocriticalvdeath,edomaintheTheconthisvyergenceedofapthaelsolutionntheThisinorganizedtSectiondierendevisstudyThisdep.parameteeInbeofabstract(2.1)settingtotoaSectionsolutionecof4thelopemmoueddelwobtainedstatedbSectionyesettingdenetoofittonormalizedieren,SectionaswithusoftendsFinallytoisths.5Finallycase,tumorletausscdiscutheressasomerateresultscellwhicthenhtumorarewillalreadyanish.acorollaryvofailable.wFirstmaofball,viewinastherstsituationproofofagconstaneratizaconsumptionorateofandresult.onw(2.1)issystemasthews:of3,sendenceoteddepthetheofhproblemswsendencetreatmentheofrquite.formSectionawoshallofandynamicalBanacinspace3.2.whicresultsallo,the(2.1)thasaalreadygeneralbuleentistudiednina[Es2000],systemwhereSectionthTheseeaexistenceappliedofsystemsmoinoth3.3.loScaltisolutionsnhaswbdeveentheproofvaximaled.tinAsolutions.radiallyresultssymmetricesettingareforina4.1.quasi4.2stationarybanalogueuofto(2.1)mhashboureenandindiscussvhelpfulestitialgmaterial.ated4.3indeal[MatA08a]of.ourIntheorem.fact,,it5isneededshlloowngaps.there,that :=fz2C;j arg(z)j# +=2g[f0g#
d
E E E ,!E1 0 1 0
+ J R 0 0<< 1
M;> 0 #2 (0;=2)
8
AC (J;H(E ;E )); kAk ;> 1 0 C (J;L(E ;E ))1 0><
( A(s))#
>>>>
: 1 j 1kA(s)k + (1 +jj) k( +A(s)) k M;L(E ;E ) L(E ;E )1 0 0 j
(s; ;A )2J A j = 0; 1#
H(E ;E ) A2L(E ;E )1 0 1 0
A E0
tAE L(E ) e0 0
(A) A X;Y C (X;Y )

1=Mkxk kA(s)xk Mkxk ;E E E1 0 1
(s;x;A)2JE A1
U (t;s) E A2AA 1
1A a > 0 A2A
a
C =C(k;M) =(#;M)> 0
ei.e.roughoutinlerators,opisthatsolutions,,wingona,,arewhicproblems.htoweedeed,shallanddenotelinearbossessingyforuousdetailedtinMoreo.whoseThethesymwbtecolofconastronglywaLetgeneratesIdenotesthetheleadresolv3.1enabstracttinsetBanofyiny,.and,cangivinener,metricvspacesor-eratorealedopofclosedthe,shauseaseconsiderede,fundamenthatelonginghofsucshallis,the,set.ofI,in-(3.2)H?lderthatconcommtintheuoust:functions.e(3.1)anhas3.1thedynawSingularell-knoawnasimplicationregularit(3.2)subspaceeratorsanoparelinearassumeoundedAbconstructionallboffoundset[LaQPP].thevdenotesestimatesHere,pro.en,andimpwheretance(3.1)revthatinhstudysucquasilinearsInasequelellewaaslaretheseTherehniqu;s,derivgestimatestaininthecontalofbaltotervfamilysubintherfectformpeasectionisthis.TIt.isequationsalsoInwLemmaellIkno2.2.1wn,[LaQPP]that(3.1),(3.1)andguaranfactteessemigroupthegeneratorexistenceute,oftoafolloparastatemenbLemmaolicTherfundamenexisttaldsolutionsetting;Thees,systemsacmicalspnonlinearhlimitsc3panalyticsuchsemigroup6of