366 Pages
English

Spatial database support for virtual engineering [Elektronische Ressource] / von Martin Pfeifle

-

Gain access to the library to view online
Learn more

Description

Spatial Database Support for Virtual EngineeringDissertation im Fach Informatikan der Fakultät für Mathematik und Informatikder Ludwig-Maximilians-Universität MünchenvonMartin PfeifleTag der Einreichung: 21. April 2004Tag der mündlichen Prüfung: 15. Oktober 2004Berichterstatter:Prof. Dr. Hans-Peter Kriegel, Ludwig-Maximilians-Universität MünchenProf. Dr. Bernhard Seeger, Philipps-Universität MarburgiAcknowledgmentsMany people supported and encouraged me in the past three years while I wasworking on this dissertation. I would like to thank them here, even if I cannot mentionthem all by name.I would like to express my deepest thanks to my supervisor Prof. Dr. Hans-PeterKriegel. Without his confidence in me and my ideas, and without the productive andinspiring working atmosphere he created, this work could never have come into ex-istence. I am also very grateful to Prof. Dr. Bernhard Seeger for his interest in mywork and his immediate willingness to act as a second referee. This work would not have been possible without the cooperation of my colleaguesin the database group. In particular, I would like to thank Dr. Marco Pötke andProf. Dr. Thomas Seidl who introduced me into the area of spatial databases andguided my first research efforts. Their suggestions and judgments have always beena rich source of inspiration.

Subjects

Informations

Published by
Published 01 January 2004
Reads 14
Language English
Document size 6 MB

Spatial Database Support for
Virtual Engineering
Dissertation im Fach Informatik
an der Fakultät für Mathematik und Informatik
der Ludwig-Maximilians-Universität München
von
Martin Pfeifle
Tag der Einreichung: 21. April 2004
Tag der mündlichen Prüfung: 15. Oktober 2004
Berichterstatter:
Prof. Dr. Hans-Peter Kriegel, Ludwig-Maximilians-Universität München
Prof. Dr. Bernhard Seeger, Philipps-Universität Marburgi
Acknowledgments
Many people supported and encouraged me in the past three years while I was
working on this dissertation. I would like to thank them here, even if I cannot mention
them all by name.
I would like to express my deepest thanks to my supervisor Prof. Dr. Hans-Peter
Kriegel. Without his confidence in me and my ideas, and without the productive and
inspiring working atmosphere he created, this work could never have come into ex-
istence. I am also very grateful to Prof. Dr. Bernhard Seeger for his interest in my
work and his immediate willingness to act as a second referee.
This work would not have been possible without the cooperation of my colleagues
in the database group. In particular, I would like to thank Dr. Marco Pötke and
Prof. Dr. Thomas Seidl who introduced me into the area of spatial databases and
guided my first research efforts. Their suggestions and judgments have always been
a rich source of inspiration. Furthermore, I would like to thank Matthias Renz, Peter
Kunath, Stefan Brecheisen, Eshref Januzaj, Peer Kröger, Matthias Schubert, Karin
Kailing and Stefan Schönauer for constructive and productive team-work.
I also appreciate the substantial help of the students whose study thesis or diploma
thesis I supervised, including Stefan Brecheisen, Peter Kunath, Felix Leis, Olaf
Schmitt, Maximillian Viermetz, Petra-Maria Strauß, Ralf Hofmann, Hans Maier,
Wolfgang Mühlberger, Markus Veith, Marc Hiller and Michael Passer.
I want to express special thanks to Franz Krojer, for taking care of our technical
environment, and to Susanne Grienberger, for bearing much of the administrative
burdens.
Furthermore, I would like to thank Stefan Brecheisen and Peter Kunath for care-
fully reading significant portions of this work and for providing valuable hints on
improving the presentation. ii
In particular, I would like to express my deepest thanks to my parents, who con-
stantly supported me. They brought me up and taught me the readiness to work hard
for my goals. I know that I would be nothing without them. Last but not least, my
special thanks go to my wife Valerie for her encouragement and sacrificial love.
Without her considerateness, this work could never have been accomplished. She
took care of our two lovely little sons, Samuel and Benito, and answered their prob-
ing questions about the whereabouts of their father with a patient smile: “He is writ-
ing his dissertation in Munich”. Thank you!
Martin Pfeifle
Munich, April 2004.iii
Abstract
The development, design, manufacturing and maintenance of modern engineering
products is a very expensive and complex task. Shorter product cycles and a greater
diversity of models are becoming decisive competitive factors in the hard-fought
automobile and plane market. In order to support engineers to create complex prod-
ucts when being pressed for time, systems are required which answer collision and
similarity queries effectively and efficiently. In order to achieve industrial strength,
the required specialized functionality has to be integrated into fully-fledged database
systems, so that fundamental services of these systems can be fully reused, including
transactions, concurrency control and recovery.
This thesis aims at the development of theoretical sound and practical realizable
algorithms which effectively and efficiently detect colliding and similar complex
spatial objects.
After a short introductory Part I, we look in Part II at different spatial index struc-
tures and discuss their integrability into object-relational database systems. Based on
this discussion, we present two generic approaches for accelerating collision queries.
The first approach exploits available statistical information in order to accelerate the
query process. The second approach is based on a cost-based decompositioning of
complex spatial objects. In a broad experimental evaluation based on real-world test
data sets, we demonstrate the usefulness of the presented techniques which allow
interactive query response times even for large data sets of complex objects.
In Part III of the thesis, we discuss several similarity models for spatial objects. We
show by means of a new evaluation method that data-partitioning similarity models
yield more meaningful results than space-partitioning similarity models. We intro-
duce a very effective similarity model which is based on a new paradigm in similarityiv
search, namely the use of vector set represented objects. In order to guarantee effi-
cient query processing, suitable filters are introduced for accelerating similarity que-
ries on complex spatial objects. Based on clustering and the introduced similarity
models we present an industrial prototype which helps the user to navigate through
massive data sets.v
Abstract (in German)
Ein schneller und reibungsloser Entwicklungsprozess neuer Produkte ist ein wich-
tiger Faktor für den wirtschaftlichen Erfolg vieler Unternehmen insbesondere aus der
Luft- und Raumfahrttechnik und der Automobilindustrie. Damit Ingenieure in immer
kürzerer Zeit immer anspruchsvollere Produkte entwickeln können, werden effek-
tive und effiziente Kollisions- und Ähnlichkeitsanfragen auf komplexen räumlichen
Objekten benötigt. Um den hohen Anforderungen eines produktiven Einsatzes zu
genügen, müssen entsprechend spezialisierte Zugriffsmethoden in vollwertige
Datenbanksysteme integriert werden, so dass zentrale Datenbankdienste wie Trans-
aktionen, kontrollierte Nebenläufigkeit und Wiederanlauf sichergestellt sind.
Ziel dieser Doktorarbeit ist es deshalb, effektive und effiziente Algorithmen für
Kollisions- und Ähnlichkeitsanfragen auf komplexen räumlichen Objekten zu ent-
wickeln und diese in kommerzielle Objekt-Relationale Datenbanksysteme zu
integrieren.
Im ersten Teil der Arbeit werden verschiedene räumliche Indexstrukturen zur effi-
zienten Bearbeitung von Kollisionsanfragen diskutiert und auf ihre Integrations-
fähigkeit in Objekt-Relationale Datenbanksysteme hin untersucht. Daran an-
knüpfend werden zwei generische Verfahren zur Beschleunigung von Kollisionsan-
fragen vorgestellt. Das erste Verfahren benutzt statistische Informationen räumlicher
Indexstrukturen, um eine gegebene Anfrage zu beschleunigen. Das zweite Verfahren
beruht auf einer kostenbasierten Zerlegung komplexer räumlicher Datenbank-
Objekte. Diese beiden Verfahren ergänzen sich gegenseitig und können unabhängig
voneinander oder zusammen eingesetzt werden. In einer ausführlichen experiment-
ellen Evaluation wird gezeigt, dass die beiden vorgestellten Verfahren interaktive
Kollisionsanfragen auf umfangreichen Datenmengen und komplexen Objekten er-
möglichen. vi
Im zweiten Teil der Arbeit werden verschiedene Ähnlichkeitsmodelle für räum-
liche Objekte vorgestellt. Es wird experimentell aufgezeigt, dass datenpartitionier-
ende Modelle effektiver sind als raumpartitionierende Verfahren. Weiterhin werden
geeignete Filtertechniken zur Beschleunigung des Anfrageprozesses entwickelt und
experimentell untersucht. Basierend auf Clustering und den entwickelten Ähnlich-
keitsmodellen wird ein industrietauglicher Prototyp vorgestellt, der Benutzern hilft,
durch große Datenmengen zu navigieren. vii
Survey of Chapters
PART I. INTRODUCTION TO VIRTUAL ENGINEERING
1 Introduction 3
2 Spatial Engineering Databases 15
PART II. DATABASE SUPPORT FOR DIGITAL MOCKUP
3 Object Relational Indexing 29
4 A Cost Model for Spatial Intersection Queries 67
5 Statistic-Driven Acceleration of Relational Index Structures 95
6 Cost-based Decompositioning of Complex Spatial Objects 121
PART III. DATABASE SUPPORT FOR SIMILARITY SEARCH
7 Foundations of Similarity Search 171
8 Similarity Models for Voxelized CAD Data 199
9 Effectiveness of Similarity Models 223
10 Efficiency of Similarity Models 243
11 BOSS: Browsing Optics-Plots for Similarity Search 289
12 Conclusions 313viii Survey of Chapters