Supernovae observations and dark energy models [Elektronische Ressource] / put forw. by Maqsuda Afroz

English
98 Pages
Read an excerpt
Gain access to the library to view online
Learn more

Description

ctorDissertationOralsubmittedytothethePutCominbinedyFofacultiesNaturalforardtheAfrozNaturala,Sciences28.04.2010andforfordegreeMathematicsDoofoftheSciencesRupforwerto-CarolabUnivMaqsudaersitBornyDhakofBangladeshHeidelbexamination:erg,GermanettericSupProf.ernoLucavChristofaeProf.ObservReferees:ationsDr.andWDarkhEnergyDr.MoAmendoladelsΛCDMwΩmΩmw ΛCDMΩmΩmwiesetsundaundvundailableterziehen.fromgebracvempriscariousarameterSNewiegroupsUnserelikerwegewSNLSeimandSupHSSTdieanddieutilizehthemdelltoeiputdemconstrainhabtsauftheernocosmologicalfest,parameters.ertWMoezuuseenthensoftkwWirareCMBEASY,CMBEASYonstantoderapplyObservthehMCMCerpunktemethoundddemtoUnionmohedelsdaslikSoftederdataErgebnissereview?nneDeswwv,denConstandietneuerEquationwoftheoretiscStatev(EoS)vthesisdemandSNLSQuindiese,tessence,ertewithhenourhr?nkemphasiserwbweingMoondertheBewIPLDarkandtessenzCorasanitiandmo-del.MCMC-UnWzuehdowirthedasanalysisCorasaniti-MousingbasierttheGoldRiessundGoldSetSet,system-theehler).SNLSCMBEASYsampleDataandundtheareUnionneustenDatahSett.(withdassandseinwithoutalssystematics).hWstellenewirhaMovunge-ehenextendedSupCMBEASYnahe,tohincludeosmologiscthedasUnionvDatahinSetMotivandhhenceonbernoea-Gruppup-to-datewiewithHSSTlatestderobservundations.utzenOurumresultsWshoderwosmologiscthatPthiseinzuscInen.mighvtendenbSoftearesmallerumthandellecommonlydasassumed.

Subjects

Informations

Published by
Published 01 January 2010
Reads 8
Language English
Document size 2 MB
Report a problem

ctorDissertationOralsubmittedytothethePutCominbinedyFofacultiesNaturalforardtheAfrozNaturala,Sciences28.04.2010andforfordegreeMathematicsDoofoftheSciencesRupforwerto-CarolabUnivMaqsudaersitBornyDhakofBangladeshHeidelbexamination:erg,GermanettericSupProf.ernoLucavChristofaeProf.ObservReferees:ationsDr.andWDarkhEnergyDr.MoAmendoladelsΛCDM
w
Ωm
Ωm
w ΛCDM
Ωm
Ωm
wiesetsundaundvundailableterziehen.fromgebracvempriscariousarameterSNewiegroupsUnserelikerwegewSNLSeimandSupHSSTdieanddieutilizehthemdelltoeiputdemconstrainhabtsauftheernocosmologicalfest,parameters.ertWMoezuuseenthensoftkwWirareCMBEASY,CMBEASYonstantoderapplyObservthehMCMCerpunktemethoundddemtoUnionmohedelsdaslikSoftederdataErgebnissereview?nneDeswwv,denConstandietneuerEquationwoftheoretiscStatev(EoS)vthesisdemandSNLSQuindiese,tessence,ertewithhenourhr?nkemphasiserwbweingMoondertheBewIPLDarkandtessenzCorasanitiandmo-del.MCMC-UnWzuehdowirthedasanalysisCorasaniti-MousingbasierttheGoldRiessundGoldSetSet,system-theehler).SNLSCMBEASYsampleDataandundtheareUnionneustenDatahSett.(withdassandseinwithoutalssystematics).hWstellenewirhaMovunge-ehenextendedSupCMBEASYnahe,tohincludeosmologiscthedasUnionvDatahinSetMotivandhhenceonbernoea-Gruppup-to-datewiewithHSSTlatestderobservundations.utzenOurumresultsWshoderwosmologiscthatPthiseinzuscInen.mighvtendenbSoftearesmallerumthandellecommonlydasassumed.kFtenurther,egunsgleicwunge,ndQuinthatsoirrespdasectivationseaeofMomoeinerdeltersucorungdataunsetSccwhosenlegenwdabeaufgetIPL-approdasximatelydell.theAnalysesameaufvRiessalueSet,forSNLS-DatensatzdelsdemMoData,(mitwhereasohnethisatiscisFnotWirtheencaseumwithUnionw.SetTheeitertwdieorkwindamitthisdenthesisStandindicatesBeobacthattungenthehemphasisUnsereinzeigen,constructingvnewkleinercosmologicalkmotedelsf?rshould?hnliccangenommen.hangeeiterenfromwirempiricaldassEnergyunabh?ngigerhalten,onasdellwDatensatzhf?hrdergleicallWDief?rorliegendeeittowtheoreticalf?rmotivnications.tSupFernoist.vvae-BeobacArbhlegttungenEmpfehlungundbMoErricdelletenderkDunklenherEnergiedelleInAugenmerkdieseregArboneithenunzutersuchenhenationenwirricmehrereten.Datens?tzeΛ = 0
.Basics.of.Cosmology.8.1.Concepts....̸.................16...e...on.......Conclusion.......14...duction...2.2...T.....ae..8.1.1.Cosmological.Principle..2.4...2.4.1.....Angular.......3...........Cosmology.....15.........Mo..8.1.2ConsequencesComo.vingTheand.Ph.ysical.CoRedshiftordinatesMicro.........Structure.............ations..........8.1.3TheHubble's.La.w/ExpansionRelationof.the.Univ.erse......Da.......................Observ9.1.4.Dynamics.of.the.Univ.erseIn.................W.with.........Observ.a.....16.Issue......9.1.4.1.F.riedmann2.3.2EquationerNo.the.a.k-...............17.ormation...........2.3.4.in......10.1.4.2.FluidIaEquation..............y...........18.Relation.......2.5.-.........20..10.1.4.3.A.cceleration.Equation......I.Energy.tro................................10.1.4.4.Equation.of.State..2.ational.........................2.1.tro..............11.1.5.Densit.y.P.arameter......15.FR.Cosmological.dels.ContentsI4..................2.3.ational.of.Cosmological.erm.........2.3.1.Age..11.1.6.Concordance.Mo.del.of.the.Univ.erse........16.High.Sup.v.and.Cosmic.w.v.Bac.ground..........11.1.6.1.Historical.Dev.elopmen.t..........2.3.3.F.......................18.Bary.Excess.Clusters11.1.6.2.Curren.t.Dev.elopmen.t......18.SNe.Observ...........................18.Luminosit.Distance..12.1.7.An.thropic.Principle............2.4.2.Magnitude-Redshift...............20.The.Size.Redshift..................132.61.8.General.Relativit.y..........................22.I.rk.23.In.duction..................14.1.9.Conclusion........23.z
.3.1.DynamicsSALof.Dark.EnergyIn...........................Used.....of.Systematics.dology.......11.224.3.1.1GoldThe.ASamplecceleration.Equation....40...........Ligh.................arametrization...Numerical24.3.1.2.Deceleration.P.arameter....................7.3.........Set.......Dieren.SN25.3.2.Hubble's.P.arameter.and435Shap....GIC...44.........ed.......tro.................and..25.4.Dark.Energy.T.ask.F.orce.Rep.ort......7.1...............7.2.SNLS..............26.4.1.Goals.and.Metho.dology.for.Studying.DarkUnionEnergy..............42.Metho.Calculations..26.4.243Findings.of.the.Dark.Energy.T.ask.F.orce..MLCS2k2.Curv.........8.3.Color-MA.Calibration.....Ev......27.4.3.Recommendations.of.the44DarkvEnergySNeT.ask.F.orce....IV.9..............28.4.410Dark.Energy.Primer..........46.o.Calculation:.......11.1.................Sim............29.4.5.Staging.stage.IV:.Ground.and.Space39OptionsReiss.Sample........................31.4.639TAstierecorhnique.P.erformance.Pro.jections................40.SNAP..................31.5.Candidates.of.Dark.Energy......7.4.Data...............................8.t.ds33for5.1usingCosmologicalIaConstan.t......8.1.T...................................8.2.Multicolor.t.e33e5.2.Quiessence............43.CMA.-.Gnitude.tercept...........8.4.olution.SNe..........................34.5.38.5QuinIntessenceolv.in.......................45.Metho.46.In.duction............................34.646ConclusionP...............................11.T.ols.MCMC...............47.CMBEASY........38.I.I.I.Sup.erNovae.Observations.39.7.SNe.Ia.Pro47jectsMCMC.ulation...........................48.ΛCDM
= 0
Λ
Λ
Λ
Λ
..........14.4...State.....................14.3.1.........497612.1wErrortialEstimations..References.......P...P.........70...w...tial.....................15..53.13delMo.dels.Chosen..Constan.....14.2.3.La.............Nosystematics.............Equation.....v.......14.3.4......54.13.1.....Data.ational.Mo.del..Equation.....v.......14.4.4...............Conclusion.................65.Equation......54.13.2.ConstanvtwEoS.̸.Observ.12......14.2.4.tial...........14.3...........................Constan.State......54.13.314.3.3InPvLaerse.P.o.w.er.La.wPMo.del..........Systematics.............75.del...............Constan.State..55.13.4.Corasaniti.Mo14.4.3delP.La.............P.............................82.VI.14.2.1.Mo....55.V.Results.and.Discussion.57.14.Results............14.2.2.t.of...................65.In.erse.o.er.w......................576714.1CorasanitiReissotenGold.Sample....................68.Union...........................69.Mo.del..58.14.1.1.6........Mo.del............14.3.2.t.of...................71.In.erse.o.er.w............59.14.1.2.Constan.t.Equation.of73StateCorasaniti.oten.......................74.Union........60.14.1.3.In.v.erse.P.o.w.er.La.w14.4.1.Mo...............................14.4.2.t.of........61.14.1.4.Corasaniti.P.oten.tial77.In.erse.o.er.w.......................78.Corasaniti.oten......63.14.2.SNLS/Astier.Sample..........79.Discussion.................................VI.85.I.8964e.7fthIntroconcenductioncalculationsandhoOutlineolvCosmologysummarycanjustifcaitonprobablythebwilleimpconsiderederviewonemoofIatheusedoldesttscienceswhicexisting.wEvtheoreticalenInfromDarktheaserafurtherofenHipparcahwingusthenwdsedealhats,vtheeersewdividedonderedyabtheoutbasicsourtheunivderiverseinandcitstofate.outWassoethehaevthateationalcomecalolongmanwenergyastartedyrepsinceokthose37,daTys.TheThelikadvparametersancemenctsosingininourtheunderstandingtandthesistectohnologyonehasbuildallocase.wcedrecalluscosmologytosomereacortanhectsoutwhictoethelaterfronfollotierswofonsciencewhatandandtoofcthallengewitholdellbineliefsBeforeandinacceptabnewoonesoutabisouttheourInunivwerse.inOneamongofdierentheseofnewThechaptershallengesaistheDark[85]Energycloserandtheitsationspropanderties.eDarkusedEnergytakiscthatmethopartMCMCofcalculatingthetheirenergyd-densitandycofmotheandunivonenerseofwhicunivhmighhasbbThiseenisinintrosectionsducedhtobdescriboneeupthewholeacceleratedInexpansionrstofhaptertheeunivtheerse.ofItandhaswfoundofitsimpwtaaspyareined,tohthebStandardcrucialMothedelstages.afterthevwingarioushapterobserveationstratemadetryingusexplainrethinkistheEnergysteadygurestatesomeandtheotherortanstaticerasunivciatederseitmowdels.asItdynamicshasvnegatived.ewpressuregoandtohasdetailsbouteenanavrequiremenabtobservevcosmologyergivsinceinthenextdimmer-than-exphapter.ectedtheobservsectionationseofokthetolighfewtthecurvyestfordelsthedarkSupexisting.ernofollovcaeareIa.withThebriefbasisofofDETFthisortthesisandisatoloshoatwSNehoobservw[15,observ32]ationsmethosplikeciallySALSNe[95]relatefortoisdierenen.tnexttheoreticalhaptersmowithdelsdsofeour[28]univforerse.theTheandemphasisconstrainismoputelsonhosentryingthetoforgurehooutthosewhatdels,theresultsDarktheirEnegytepretation.comp2 2 2 2 2ds =dt +a(t)(dx +dy +dz )
2ds
a
ix t
idx = 0
dt
1i /2x a(t) (∆ x+∆y+∆z)
d(t) =a(t)dcoord
wthisstreamthesis.galaxy1.1inCosmologicali.e.Principlewn.TherdinatescosmologicaltoprincipleofbasicallycomosaofyspthatWwFReaarecatedinersenoelsewcoaalongyatsptheecialetindistancetheiscosmos.andThisgalaxiesasarewuid.egalaxyunderstandeit,threenaiv.elyvleadsmtoestablishisotropfurtherysaidandcohomogeneitThisyco.wLettimeusgivnothewyseethewhatbwisethemean1.2bCoydistributionaradiationhomogeneitmoyothenedandaisotropsucyan.thoughAehomogeneousparticleisotropicyspacetimeordinatesistimeoneourforisotropic,whiccithhthevgeometrywispreferredsphericallyceedsymmetrical.abis,outbanComoyareonethepanointhetrequired(isotroptimes.y)thatandincreasesthejorsamesomeatwandescribyordinatepeenoinwttsinphspacegivotheritsthanfull-edgedthatno(homogeneitcalledy).FRHomogeneitmetric.yComovingandPhysicalisotropoyTheareofsymmetriesandofinspaceWanddelsnotsmospace-outtime.toThecosmicsimplestInexamplehofcaseaindividualhomogeneous,isisotropictcosmologicalbgeometrylikisadescribloedbbtheycothealineatelementhetSincestagesunivearlyisthethesinceeloyyaeacwgalaxylongustaanish,comeithasouldCosmologyaConceptsdirection,1alongCosmologyprooftoBasicsTheI.ordinaterttherefore,(1)toaePving.isvingknoordinateswncarriedaswiththeexpansion.FlatmeansRobindividualertson-Whasalksameerordinatemetricare[115].allMoNodelsifincosmologywhicconceptshwiththeandscalemafactorof8enobareeysBeloEinstein'solaesycoofdistancebWwseeanthetfactorowithoinertson-Wthenalkactualerysicalmoisdelsenandytheonmetricscienceforasucwhandcasesws.areeknoifwnscaleasincreasesFtimeriedmann-Robλ a0 01+z = =
λ a(t)em
100Mpc a(t)
a˙H =
a
vv z = /c
−→ −→v = H r H0 0
a = 1 H 70±4km/sec/Mpc0 0
ordermoisvingandaatwerseaLayefromtimeus,elothethisfurthernoainwparameteraalueyofitisis,ersemore,rapiderythingisvitslinearrecession.knoThealmostv,elovcitiesHubble'softherecessionandareofmeasuredtheusingtheseredshifts.thatRedshiftdynamicsisatnothingybutredshiftthetheDopplerHubbleeectandappliedcittoinlighatwwasa[78].visesationalandofispresengivofenwnbt.ytak1.3terse.dramaticunivthateexpandingvanximatelyesLadescribscalesfactorspace.scalescalesthevitHence,So[116].understanddistancetheysicalyphv.citTheappdistancethebisetunivwineen.anusedyrelationpairexpressedofelogalaxiesyseparateddistancebaywmoreythanwtheelleswndoHubble'siswpropevortionalthattocosmologyaevidenceunivobserversalwherescalepiecefactorthesotwalueLaHubble'sHubble'skno,astheConstansameWforgenerallyeveearspresenbv1.4oftomostofTheUniversendeUniversewiscosmologyaabaluetheapproandtheolutionw/ExpansiontheHubble'serseery.pair.DynamicsThetheHubbleWparameterknoisthatthenisdenedoutbstructureyev1:ofFig.univ9onConceptslargest1ofwandmOnunderstandlargeeectsitvitgrahasyit.dominates.vitinistobuttheattractivofforceuniveteene,ustwherewhatdotgradenotesytheontimeGraderivyativnothinge.anFeorbanwobanjectrecedinga(t) a˙

ρ
4π 3r r
3
2GM r˙

r 2
2r˙ GME = − E
2 r
2a˙ 8πG kc2 2H ≡ ( ) = ρ−
2a 3 a
k
k = 0,±1
ρ
st1 dE +pdv = ds
4π 3 2E = a ρc
3
a˙ p
ρ˙ +3 (ρ+ ) = 0
2a c
a˙ρ˙ 2
a
a¨ 4πG p
=− (ρ+3 )
2a 3 c
toothecalculateouldtheWeectusedofat,grathevitdynamicsylinearlyconsiderfactor.avittestectivparticleneedofevunitusingmass,expansiononconstantheFsurfacehofrespawcomocosmologyvingclosedsphereFluid(onewexpandingtellwithoftheinunivuiderse).laIfdecreasinginwisgrathewmassAdensitequationyaofaccelerationthetiateunivanderseoutandhequationsdies.isConceptstheenradiuserseof.theAlongsphere,riedmannthenovequationsolumeabofytheandspherewithisunivtgetortanbimpinmostoftheofandandthewnptootenytialInenergyboftimethe(3)particleEquationisandofbonederivprobablyequation,.esThethekineticeenergy(2)oftothesubstituteparticleandisnegligible,therefore,inis,toand.ersebandtthereforeaunivoptheorofunivexpansionresptheelyes1.4.2describEquationequationwithriedmannF,equation,whereeFwissomethetototalusenergyoutofdensittherealitparticle.materialFitsromolutionthistimeequationtheforerse.totaleenergytheoneequationcanyderivtheeButThewEquationthermoriedmantime.Equationfunction[43,a116].makingriedmanntheFdo1.4.1sloerse.tendsunivgetthevitoffact,dynamicst.theeinouldusedandparameterswithtincreaseortan1.4.3impccelerationsomeThediscussriedmanneFluidwcanweBeloto(2)eThethirdtermwhiccase.describistheknoofwnscaleasWthedierencurveq.ature.withItecttellstimeusthenabforoutwthecancelgeometrytheoferetheyuniveacerse.termthegetnotgraisIfthiso,oywcorresp10T1toondsthe(4)F