The behavior of Nil-groups under localization [Elektronische Ressource] / vorgelegt von Joachim Grunewald
89 Pages
English
Downloading requires you to have access to the YouScribe library
Learn all about the services we offer

The behavior of Nil-groups under localization [Elektronische Ressource] / vorgelegt von Joachim Grunewald

Downloading requires you to have access to the YouScribe library
Learn all about the services we offer
89 Pages
English

Description

MathematikThe Behavior of Nil-Groups underLocalizationInaugural-Dissertationzur Erlangung des Doktorgradesder Naturwissenschaften im FachbereichMathematik und Informatikder Mathematisch-Naturwissenschaftlichen Fakult¨atder Westf¨alischen Wilhelms-Universit¨at Munster¨vorgelegt vonJoachim Grunewaldaus Bielefeld– 2005 –Dekan: Prof. Dr. Klaus HinrichsErster Gutachter: Prof. Dr. Wolfgang Luc¨ kZweiter Gutachter: PD Dr. Holger ReichTag der mundlic¨ hen Prufung:¨ 18.11.05Tag der Promotion: 8.2.06AbstractThis thesis centers around the study of the behavior of Nil-groups under localizationanditseffectontheFarrell-Jonesconjecture. Weprovethatundermildassumptionswe can always write the Nil-groups of the localized ring as a certain colimit over theNil-groups of the ring, generalizing a result of Vorst. For applications it is fruitfulto improve this result. For this purpose, we define Frobenius and Verschiebungoperations on certain Nil-groups. These operations provide the tool to prove thatNil-groups are modules over the ring of Witt-vectors and are either trivial or notfinitely generated as abelian groups. We use the improved localization results toshow that Nil-groups of polycyclic-by-finite groups are torsion. As an importantcorollary, we obtain the result that the Nil-groups appearing in the decompositionof the K-groups of virtually cyclic groups are torsion groups.

Subjects

Informations

Published by
Published 01 January 2005
Reads 12
Language English

Exrait

Mathematik
The Behavior of Nil-Groups under Localization
Inaugural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Mathematik und Informatik derMathematisch-NaturwissenschaftlichenFakulta¨t derWestf¨alischenWilhelms-Universita¨tMu¨nster
vorgelegt von Joachim Grunewald aus Bielefeld – 2005 –
Dekan: Erster Gutachter: Zweiter Gutachter: Tagdermu¨ndlichenPr¨ufung: Tag der Promotion:
Prof. Dr. Klaus Hinrichs Prof.Dr.WolfgangLu¨ck PD Dr. Holger Reich 18.11.05 8.2.06
Abstract
This thesis centers around the study of the behavior of Nil-groups under localization and its effect on the Farrell-Jones conjecture. We prove that under mild assumptions we can always write the Nil-groups of the localized ring as a certain colimit over the Nil-groups of the ring, generalizing a result of Vorst. For applications it is fruitful to improve this result. For this purpose, we define Frobenius and Verschiebung operations on certain Nil-groups. These operations provide the tool to prove that Nil-groups are modules over the ring of Witt-vectors and are either trivial or not finitely generated as abelian groups. We use the improved localization results to show that Nil-groups of polycyclic-by-finite groups are torsion. As an important corollary, we obtain the result that the Nil-groups appearing in the decomposition of theK-groups of virtually cyclic groups are torsion groups. This implies that the Farrell-Jones conjecture predicts that rationally the building blocks of theK-groups of groups are theK-groups of finite groups.
3
4
19 19
22 23 24 25 26
21 21
. . .
. . .
. . . . . . . . . . . . Free Products . . . Laurent Extensions
. . . . . . . Generalized Generalized
Farrell Nil-Groups . . . . Waldhausen Nil-Groups of Waldhausen Nil-Groups of
1.2.2 1.2.3 1.2.4
7
29 29 34 35
. . . . .
. . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
and Nil-Groups End-Groups and END-categories 1.1.1 End(R)-Groups . . . . . . 1.1.2 Waldhausen End-Groups Nil-Groups and NIL-categories . 1.2.1 Bass Nil-Groups . . . . .
1.2
End-1.1
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
3.4
71
. . .
Applications 4.1 Improved Localization Results . . . . . 4.2 Transfer and Induction on Nil-Groups 4.3 Regular Group Rings . . . . . . . . . .
. . .
. . .
. . .
. . .
53 53 55 55 57 60 60 63 66
ell and Waldhausen Nil-Groups as Modules over the Ring of Witt ors Nil-Groups as Modules over End0. . . . . . . . . . . . . . . . .. . . . Operations on Farrell and Waldhausen Nil-Groups . . . . . . . . . . . 3.2.1 Frobenius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Verschiebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Non Finiteness Results . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 The Relation Vn(yFnx) = (Vny)x .on Farrell Nil-Groups . 3.3.3 The Relation Vn(yFnx) = (Vny)xon Waldhausen Nil-Groups Farrell and Waldhausen Nil-Groups as Modules over the Ring of Witt vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Farr vect 3.1
3.2
3.3
50
. . . .
. . . .
Behavior of Nil-Groups under Localization Homological Facts about NIL-categories . . . . . . . . . . . . . . . Colimits in the Category of Exact Categories . . . . . . . . . . . . The Long Exact Localization Sequence of NIL-Categories . . . . . The Behavior of Nil-Groups under Localization . . . . . . . . . . .
The 2.1 2.2 2.3
2
2.4
Introduction
Contents
. . . . . . . . .
73 74 75 78
. . .
. . .
5
1
3
4
Contents
4.4 4.5
Torsion Results . . . . The Relative Assembly
Bibliography
6
. . . Map
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
80 81
85
Introduction
In general, Nil-groups measure the difference between theK-groups of a ground ring and theK-groups of a certain ring built up out of this ring. We start by briefly recalling the importance of the various kinds of Nil-groups. The most basic kind of Nil-group is given by Bass’s definition of the abelian groups Nili(R) [Bas68, Section 12.6]. The so calledFundamental Theorem of algebraicK-theory[BHS64] gives a description of theK-groups of the Laurent polynomial ring of a ringRin terms of theK-groups ofRand the groups Nili(R) for alliZ: Ki(R[t t1]) =Ki(R)Ki1(R)Nili1(R)Nili1(R).
Ifαis a ring automorphism ofRFarrell introduced the abelian groups Nili(R;α) [Far72]. He generalized, together with Hsiang, the Fundamental Theorem of algebraic K-theory toK1 proved thatof the twisted Laurent polynomial ring [FH70]. They the sequence
K1(R)1α//K1(R)
K1(Rα[t t1])Nil0(R α)Nil0(R α1)
//K0(R)1α//K0(R) is exact. This decomposition was extended by Grayson to higher algebraicK-theory [Gra88]. For applications in topology, theK-groups of group rings are of special importance. If Γ =GoαZis the semidirect product of a groupG, an automorphismαofGand the infinite cyclic group, the group ring of Γ can be seen as a twisted Laurent polynomial ring. In this context, the statement gives that the sequence
Ki(RG)1α
Ki(RG)
Ki(RΓ)Nili1(RG α)Nili1(RG α1)
//Ki1(RG)1α//Ki1(RG)// is exact. An inclusionα:CAof rings is calledpureifA=α(C)A0asC-bimodules. It is calledpureandfreeif in additionA0is free as a leftC-module. Letα:CA andβ:CBboth be pure and free. Thegeneralized free productofAandBis the push-out ofαandβ introduced, for Waldhausenin the category of rings.R-bimodulesXandY, the abelian groups Nili(R;X Y) [Wal78a, Wal78b]. Nil-groups of this kind relate theK-groups of the generalized free product to theK-groups of the ground rings.
7
Introduction
Theorem (Waldhausen [Wal78a, Wal78b]).Letα:C ,Aandβ:C ,Bboth be pure and free. WriteA=α(C)A0andB=β(C)B0. LetRbe the generalized free product ofAandB. The groupsNili(C;A0 B0)are direct summands ofKi+1(R) and there is a long exact sequence of groups // //Ki+1(R)NiliC;A0 B0//Ki(C)//∙ ∙ ∙
. . .//Ki+1(C)
wherei0.
Ki+1(A)Ki+1(B)
Fori <eserth04]L0.raetslnaLdu¨kcB[ultisextendedbyB A special case of a generalized free product comes from the amalgamated product of groups. LetG1andG2be groups with a common subgroupH. The group ring ofG1HG2is the generalized free product of the group rings ofH,G1andG2. In the context of group rings, the previous theorem reads as follows:
Corollary.LetΓ =G1HG2be the amalgamated product of the groupsH,G1 andG2 groups. TheNiliZH;Z[G1H]Z[G2H]are direct summands ofKi+1(Γ) and there is a long exact sequence of groups
∙ ∙ ∙
Ki+1(ZH)
Ki+1(ZG1)Ki+1(ZG2)
Ki+1(Γ)NiliZH;Z[G1H]Z[G2H]
whereiZ.
Ki(ZH)
∙ ∙ ∙
If the Nil-groups are ignored, the sequence given above is the analog of the Mayer-Vietoris sequence forK-groups. It is a general belief that Nil-groups are the ob-struction forK-theory to be a homology theory. Letα β:CA Thebe pure and free.generalized Laurent extensionwith respect toα,βis the universal ringR=Aα,β{t±1}which containsAand an invertible elementtwhich satisfies
α(c)t=(c all) forcC.
The existence of such a ring is explained in [Wal78a]. ForR-bimodulesX,Y,Zand WWaldhausen introduced the abelian groups Nili(R;X Y Z W) [Wal78a, Wal78b], which are the most general kind of Nil-groups. Nil-groups of this kind relate the K-groups of a generalized Laurent extension to theK-groups of the ground rings.
Theorem (Waldhausen [Wal78a, Wal78b]).LetRbe the generalized Laurent extension of pure and free mapsα β:C ,A. WriteA=α(C)A0andA= β(C)A00 by. DenoteβAαtheC-bimoduleAwithC-action from the left viaβ and from the right viaα. LetαA0α,βA0β0andαAβ Thebe defined similarly. groups NiliC;αA0αβA0β0βAααAβare direct summands ofKi+1(R)and there is a long exact sequence of groups
8
∙ ∙ ∙
Ki+1(C)
αβ
Ki+1(A)
wherei0.
Ki+1(R)NiliC;αA0βA0β0βAααAβα
Ki(C)
Introduction
∙ ∙ ∙
Again, this is extended toi <etraByb0u¨LdnaslL04]ck[B. A special case of a generalized Laurent extension comes from the HNN-extension of groups. LetHbe a group which is embedded into another groupGin two different ways. The group ring of the HNN-extension ofHandGis the generalized Laurent extension ofRHandRG. Insetting of group rings, the previous theorem reads the as follows:
Corollary.LetΓbe the HNN-extension of the embeddingsα β:H ,G. The groups NiliZH;Z[Gα(H)]Z[Gβ(H)]βZGααZGβare direct summands ofKi+1(ZΓ) and there is a long exact sequence of groups
∙ ∙ ∙
Ki+1(ZH)αβ//Ki+1(ZG)
Ki+1(ZΓ)NiliZH;Z[Gα(H)]Z[Gβ(H)]βZGααZGβ
whereiZ.
∙ ∙ ∙
To avoid confusion, Nil-groups of the form Nili(R) are calledBass Nil-groups, Nil-groups of the form Nili(R;α) are calledFarrell Nil-groups, Nil-groups of the form Nili(R;X Y) are calledWaldhausen Nil-groups of generalized free products and Nil-groups of the form Nili(R;X Y Z W) are calledWaldhausen Nil-groups of generalized Laurent extensions. In general, Nil-groups are subgroups of theK-groups of NIL-categories. Bass Nil-groups are subgroups of theK-groups of the NIL-category NIL(R), for Farrell Nil-groups the NIL-category is denoted by NIL(R;α), for Waldhausen Nil-groups of generalized free products the NIL-category is denoted by NIL(R;X Yfor Waldhausen Nil-groups of generalized Laurent extensions) and the NIL-category is denoted by NIL(R;X Y Z W). For a definition of the different kind of Nil-groups and NIL-categories see Chapter 1.
The Behavior of Nil-Groups under Localization
Nil-groups seem to be hard to compute. It is for example known that higher Bass Nil-groups are either trivial or not finitely generated as abelian groups [Far77, Wei81]. However, in the first chapter of this thesis, it is proven that all these kinds of Nil-groups behave nicely under localization.
Definition.LetRbe a ring.
1.
2.
LetTRbe a multiplicatively closed subset of central non zero divisors. The ringT1Ris denoted byRT.
Letsbe a central non zero divisor and letSbe the multiplicatively closed set generated bys. We use the short hand notationRsforRS.
9
Introduction
3. LetXbe anR define-bimodule. WeXTto be theRT-bimoduleRTRXRRT.
4. Ifsis a central non zero divisor, we use the short hand notationXsforRsR XRRs.
The main theorem of the first chapter is the following theorem:
Theorem.LetRbe a ring and let X, Y, Z and W be left flatR-bimodules. Letsbe an element of the center ofRwhich is not a zero divisor and satisfiessx=xs for all elementsxXand similar conditions forY,ZandW obtain an. We isomorphism
Z[t t1]Z[t]Nili(R;X Y Z W) =Nili(Rs;Xs Ys Zs Ws)
foriZ, andtacts onNili(R;X Y Z W)via the map induced by the functor
Fs: NIL(R;X Y Z W)NIL(R;X Y Z W) (P Q p q)7→(P Q ps qs).
The condition that the bimodulesX,Y,ZandWare left flat does not seem to be overly restrictive since in all the cases considered by WaldhausenX,Y,ZandW are left free by the purity and freeness condition. The conditionsx=xstranslates in Waldhausen’s setting of a generalized Laurent extension to the assumption that sis mapped, under the mapsαandβ, to central elements. In Remark 1.2.17, it is explained that Waldhausen Nil-groups of generalized Lau-rent extensions are a generalization of the other kind of Nil-groups. Thus we get the following corollaries:
Corollary.LetRbe a ring and let X and Y be left flatR-bimodules. Letsbe an element of the center ofRwhich is not a zero divisor and satisfiessx=xsfor all elementsxXand a similar condition forY. We obtain an isomorphism
Z[t t1]Z[t]Nili(R;X Y) =Nili(Rs;Xs Ys)
foriZ, andtacts onNili(R;X Y)via the map induced by the functor
Fs: NIL(R;X Y)NIL(R;X Y) (P Q p q)7→(P Q ps qs).
Again, the assumption thatXandYare left flat modules is not overly restrictive since in the case of a generalized free productXandYare left free by the purity and freeness condition. The conditionsx=xstranslates in the setting of a generalized free product to the condition thatsis mapped to central elements.
Corollary.LetRbe a ring and letα:RRbe an automorphism. Letsbe an element of the center ofRwhich is not a zero divisor and is fixed underα. We obtain an isomorphism
10
Z[t t1]Z[t]Nili(R;α) =Nili(Rs;α)
foriZ, andtacts onNili(R α)via the map induced by the functor
Fs: NIL(R;α)NIL(R;α) (P ν)7→(P νs).
Introduction
Corollary.LetRbe a ring. Letsbe an element of the center ofRwhich is not a zero divisor. We obtain an isomorphism
Z[t t1]Z[t]Nili(R)= Nili(Rs)
for alliZ, andtacts onNili(R)via the map induced by the the functor
Fs:
NIL(R)NIL(R) (P ν)7→(P νs).
For Nili(R) the result was already known [Vor79].
Nil-Groups as Modules over the Ring of Witt vectors
For applications, it is fruitful to improve these results to an isomorphism between RsRNil(R) and Nil(Rs). To get this isomorphism, we develop in the third chapter a Witt vector module structure on certain Nil-groups. In this chapter, the ring is always assumed to be a either a group ring or more generally an algebra over a commutative ringR us briefly recall the definition of the ring of Witt vectors.. Let For an introduction to the ring of Witt vectors see [Blo77]. Thering of (big) Witt vectors +is the ring 1tRJtKof power series with constant term 1. The underlying additive group of the ring of Witt vectors is the multiplicative group of 1 +tRJtK. The multiplication is the unique continuous functorial operationfor which
(1at)(1bt) = (1abt)
holds for alla,bR. In the sequel, the ring of Witt vectors is denoted byW(R). We define idealsIN +:= (1tNRJtK) for allNN. The resulting topology on the ring of Witt vectors is called thet-adic topology. There is a different approach to the ring of Witt vectors which emphasizes the re-lation toK-theory. Let END(R) be the exactcategory of endomorphisms of finitely generated projective rightR-modules. The objects of this category are pairs (B ϕ) whereBis a finitely generated projectiveR-module andϕis an endomorphism ofB. Maps from (B ϕ) to (B0 ϕ0) are module homomorphismsf:BB0such thatϕ0f=fϕ. A sequence is calledexactif the underlying sequence of mod-ule homomorphisms is exact. SinceRis assumed to be commutative, the tensor product induces a ring structure onK0END(R) by End. Denote0(R) the quotient ofK0END(R)ideal generated by elements of the form [(by the B the0)]. Since characteristic polynomial χ(B ϕ):= det(idBtϕ)
11